Advertisement

Promoting Circular Economy Through Sustainable Agriculture in Hidalgo: Recycling of Agro-Industrial Waste for Production of High Nutritional Native Mushrooms

  • María Virginia Ozcariz-Fermoselle
  • Gabriela de Vega-Luttmann
  • Fernando de Jesús Lugo-Monter
  • Cristina GalhanoEmail author
  • Oscar Arce-Cervantes
Chapter
Part of the Climate Change Management book series (CCM)

Abstract

The effect of climate change on agriculture and its implications on food security are demanding topics. It is crucial to convert the existing methods of food production into a more sustainable, resilient and productive agriculture. Reduction of food loss and waste will improve the efficiency of the food system, and simultaneously it will reduce the pressure put on natural resources and diminish the greenhouse gases emissions. This project aims to assess the potential use of agribusiness waste as a substrate for cultivation of Pleurotus spp., in order to contribute to the development of a more sustainable agriculture practices while promoting local development. The principles of Circular Economy are being applied to the most representative lignocellulosic waste of the Hidalgo State: pecan nutshell (PS), agave bagasse (AB), pine needles (PN), tamal leaves (TL) and coffee pulp (CP). It was studied the potential of these wasted plant material as substrates to grow mushrooms, of ten native Pleurotus spp. strains, with high nutritional value (seven Pleurotus ostreatus strains, one Pleurotus eryngii strain, one Pleurotus djamor strain and one Pleurotus opuntiae strain). In order to evaluate the different waste usefulness in mushroom’s growth, radial growth rate of the ten strains was assessed. Generally, the agave bagasse substrate promoted the highest growth rate. All Pleurotus spp. strains had slowest growth in control medium, PDA, due to the lack of lignocellulosic compounds.

Keywords

Agro-industrial waste Circular economy Pleurotus spp Sustainable agriculture 

References

  1. Abreu Sherrer JS (2013) Aprovechamiento de bagazo de Agave tequilana Weber para la produccion de bio-hidrógeno. http://hdl.handle.net/11627/86
  2. Akyuz M, Kirbag S (2009) Antimicrobial activity of Pleurotus eryngii var. ferulae grown on various agro-wastes. EurAsian J BioSciences 3:58–63CrossRefGoogle Scholar
  3. Bicket M, Guilcher S, Hestin M, Hudson C, Razzini P, Tan A, Ten Brink P. Van Dijl E, Vanner R, Watkins E (2014) Scoping study to identify potential circular economy actions, priority sectors, material flows and value chains. Project Report. European Commission. Official URL: http://bookshop.europa.eu/en/scoping-study-to-identify-potential-circular-economy-actions-priority-sectors-material-flows-and-value-chains-pbKH0114775/
  4. Camacho JA (2012) La Nuez Pecanera Mexicana “La reina de las frutas secas” Importancia nutricional y usos de la nuez pecanera. Obtenido de http://2006-2012.sagarpa.gob.mx/agricultura/productodetemporada/_layouts/mobile/dispform.aspx?List=75320ba8-c685-403d-a5aa-b32646bacf02&View=5050ddad-bb6c-4d20-8e46-97b7179e8410&ID=68
  5. Chauhan S, Khandelwal RS, Prabhu KV, Sinha SK, Khanna-Chopra R (2005) Evaluation of usefulness of daily mean temperature studies on impact of climate change. J Agron Crop Sci 191(2):88–94CrossRefGoogle Scholar
  6. Chatzipavlidis I, Kefalogianni I, Venieraki A, Holzapfel W (2013) Commission on Genetic Resources for Food and Agriculture. FAOGoogle Scholar
  7. Córdova-Ordóñez MM (2009) Estudio comparativo del crecimiento miceliar del hongo (Pleurotus ostreatus) en acícula de pino, bagazo de caña y bagazo de maíz. Bachelor’s thesis, University of Azuay. http://dspace.uazuay.edu.ec/handle/datos/580
  8. El Informador (2016) Registran aumento en la producción de tequila en 2016. http://www.informador.com.mx/economia/2016/662113/6/registran-aumento-en-la-%20produccion-de-tequila-%20en-2016.htm. Accessed 19 May 2016
  9. FAO (2017) Conference on sustainable and climate-smart agriculture. Mumbai, India. Accessed 21 Apr 2017Google Scholar
  10. Frusso EA (2007) Características morfológicas y fenológicas del pecán. En: RS Lavado y EA Frusso. Producción de Pecán en Argentina. Capítulo IIIGoogle Scholar
  11. Imtiaj A, Jayasinghe C, Lee GW, Lee TS (2009) Comparative study of environmental and nutritional factors on the mycelial growth of edible mushrooms. J Cult Collect 6(1):97–105Google Scholar
  12. MacArthur E (2013) Towards the circular economy. J Ind Ecol 23–44Google Scholar
  13. Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms, vol 11. Prentice hall, Upper Saddle River, NJGoogle Scholar
  14. Mata G, Hernández RG, Salmones D (2013) Biotechnology for edible mushroom culture: a tool for sustainable development in Mexico. WIT Transactions on State-of-the-art in Science and Engineering 64Google Scholar
  15. Murthy PS, Naidu MM (2012) Sustainable management of coffee industry by-products and value addition—A review. Resour Conserv Recycl 45–58CrossRefGoogle Scholar
  16. Olivares GN, González GV, Rojas GG, Favela M, Huerta E, Roussos S,…, Gutiérrez Rojas M (1990) Producción de enzimas a partir de pulpa de café y su aplicación en el beneficio húmedo. Seminario Internacional sobre Biotecnología en la Agroindustria Cafetalera. Universidad Autónoma Metropolitana, México (México) ORSTOM, París (Francia), 12–15 Abr 1989Google Scholar
  17. Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte JL, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffery S, Johnson NC, Jones A, Andeler E, Kaneko N, Lavelle P, Lemanceau P, Miko L, Montanarella L, Moreira FMS, Ramirez KS, Scheu S, Singh BK, Six J, van der Putten WH, Wall DH (2016) Global soil biodiversity atlas. european commission, publications office of the european union, Luxembourg. 176 pp. (Eds.) European Union, 2016. L-2995 Luxembourg, LuxembourgGoogle Scholar
  18. Prado-Martínez M, Anzaldo-Hernández J, Becerra-Aguilar B, Palacios-Juárez H, Vargas-Radillo JDJ, Rentería-Urquiza M (2012) Caracterización de hojas de mazorca de maíz y de bagazo de caña para la elaboración de una pulpa celulósica mixta. Madera y bosques 18(3):37–51CrossRefGoogle Scholar
  19. Quintana-Vega AM (2014) Aprovechamiento integral del bagazo de la piña de Agave tequilana Weber: Caracterización de fracciones lignocelulósicas obtenidas por un proceso organosolv. URI: http://tesis.ipn.mx:8080/xmlui/handle/123456789/12958. Accesed 04 Jun 2014
  20. Roseland M (2000) Sustainable community development: integrating environmental, economic, and social objectives. Prog Plann 54(2):73–132CrossRefGoogle Scholar
  21. Santana-Méridas O, González-Coloma A, Sánchez-Vioque R (2012) Agricultural residues as a source of bioactive natural products. Phytochem Rev 11(4):447–466CrossRefGoogle Scholar
  22. Saval S (2012) Aprovechamiento de residuos agroindustriales: Pasado, presente y futuro. BioTecnología 16(2):14–46Google Scholar
  23. Saucedo-Luna J, Castro-Montoya AJ, Martínez-Pacheco M, Campos-García J (2010) Diseño de un bioproceso para la obtención de etanol anhidro a partir de bagazo del Agave tequilana Weber. Ciencia Nicolaita No, EspecialGoogle Scholar
  24. SIAP (2014) Anuario Estadístico de la Producción Agrícola. Obtenido de Servicio de Información Agroalimentaria y Pesquera. http://infosiap.siap.gob.mx/aagricola_siap/icultivo/index.jsp
  25. Smil V (1999) Crop Residues: Agriculture’s Largest Harvest: Crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 49(4):299–308CrossRefGoogle Scholar
  26. Tesfaw A, Tadesse A, Kiros G (2015) Optimization of Oyster (Pleurotus ostreatus) mushroom cultivation using locally available substrates and materials in Debre Berhan, Ethiopia. J Appl Biol Biotechnol 3(1):15–20Google Scholar
  27. UNEP (1995) United Nations Environmental Program. www.unep.org/publications/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Virginia Ozcariz-Fermoselle
    • 1
    • 2
  • Gabriela de Vega-Luttmann
    • 2
  • Fernando de Jesús Lugo-Monter
    • 2
  • Cristina Galhano
    • 3
    • 4
    Email author
  • Oscar Arce-Cervantes
    • 2
  1. 1.Laboratorio de Tecnología de La Madera, Departamento de Ingeniería Agrícola Y ForestalUniversidad de ValladolidPalenciaSpain
  2. 2.Instituto de Ciencias Agropecuarias, Universidad Autónoma Del Estado de Hidalgo, Rancho UniversitarioTulancingoMexico
  3. 3.Department of Environmental SciencesCoimbra College of Agriculture Polytechnic Institute of CoimbraCoimbraPortugal
  4. 4.Department of Life SciencesCentre for Functional Ecology, University of CoimbraCoimbraPortugal

Personalised recommendations