Dynamical Belyi Maps

  • Jacqueline Anderson
  • Irene I. Bouw
  • Ozlem Ejder
  • Neslihan Girgin
  • Valentijn Karemaker
  • Michelle ManesEmail author
Conference paper
Part of the Association for Women in Mathematics Series book series (AWMS, volume 11)


We study the dynamical properties of a large class of rational maps with exactly three ramification points. By constructing families of such maps, we obtain \({\mathcal O}(d^2)\) conservative maps of fixed degree d defined over \({\mathbb Q}\); this answers a question of Silverman. Rather precise results on the reduction of these maps yield strong information on their \({\mathbb Q}\)-dynamics.


Arithmetic dynamics Conservative rational maps Reduction 



This project began at the Women in Numbers Europe 2 conference at the Lorentz Center. We thank the Lorentz Center for providing excellent working conditions, and we thank the Association for Women in Mathematics for supporting WIN-E2 and other research collaboration conferences for women through their NSF ADVANCE grant. We also thank the referee for numerous helpful comments, all of which greatly improved the paper.

MM partially supported by NSF-HRD 1500481 (AWM ADVANCE grant) and by the Simons Foundation grant #359721.


  1. 1.
    R. Benedetto, P. Ingram, R. Jones, A. Levy, Attracting cycles in p-adic dynamics and height bounds for postcritically finite maps. Duke Math. J. 163(13), 2325–2356 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Brezin, R. Byrne, J. Levy, K. Pilgrim, K. Plummer, A census of rational maps. Conform. Geom. Dyn. 4, 35–74 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Cordwell, S. Gilbertson, N. Nuechterlein, K.M. Pilgrim, S. Pinella, On the classification of critically fixed rational maps. Conform. Geom. Dyn. 19, 51–94 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Eskin, Stable reduction of three-point covers. Ph.D. thesis, Ulm University, 2015.
  5. 5.
    F. Liu, B. Osserman, The irreducibility of certain pure-cycle Hurwitz spaces. Am. J. Math. 130(6), 1687–1708 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Lukas, M. Manes, D. Yap, A census of quadratic post-critically finite rational functions defined over \(\mathbb {Q}\). LMS J. Comput. Math. 17(Suppl. A), 314–329 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Osserman, Rational functions with given ramification in characteristic p. Compos. Math. 142(2), 433–450 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Osserman, Linear series and the existence of branched covers. Compos. Math. 144(1), 89–106 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Pakovich, Conservative polynomials and yet another action of \(\mathrm {Gal}(\overline {\mathbb Q}/\mathbb Q)\) on plane trees. J. Théor. Nombres Bordeaux 20(1), 205–218 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    K.M. Pilgrim, An algebraic formulation of Thurston’s characterization of rational functions. Ann. Fac. Sci. Toulouse Math. (6) 21(5), 1033–1068 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S.M. Ruiz, An algebraic identity leading to Wilson’s theorem. Math. Gaz. 80(489), 579–582 (1996)CrossRefGoogle Scholar
  12. 12.
    L. Schneps (ed.), The Grothendieck Theory of Dessins D’enfants. London Mathematical Society Lecture Note Series, no. 200 (Cambridge University Press, Cambridge, 1994)Google Scholar
  13. 13.
    J. Sijsling, J. Voight, On Computing Belyi Maps, Numéro consacré au trimestre “Méthodes arithmétiques et applications”, automne 2013. Publ. Math. Besançon Algèbre Théorie Nr., vol. 2014/1 (Presses Univ. Franche-Comté, Besançon, 2014), pp. 73–131Google Scholar
  14. 14.
    J.H. Silverman, The Arithmetic of Dynamical Systems. Graduate Texts in Mathematics, vol. 241 (Springer, New York, 2007)CrossRefGoogle Scholar
  15. 15.
    J.H. Silverman, Moduli Spaces and Arithmetic Dynamics. CRM Monograph Series, vol. 30 (American Mathematical Society, Providence, 2012)Google Scholar
  16. 16.
    D. Tischler, Critical points and values of complex polynomials. J. Complexity 5(4), 438–456 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Völklein, Groups as Galois Groups. Cambridge Studies in Advanced Mathematics, vol. 53 (Cambridge University Press, Cambridge, 1996)Google Scholar
  18. 18.
    D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 306(10–11), 1072–1075 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Zvonkin, Belyi functions: examples, properties, and applications.

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Jacqueline Anderson
    • 1
  • Irene I. Bouw
    • 2
  • Ozlem Ejder
    • 3
  • Neslihan Girgin
    • 4
  • Valentijn Karemaker
    • 5
  • Michelle Manes
    • 6
    Email author
  1. 1.Bridgewater State UniversityBridgewaterUSA
  2. 2.University of UlmUlmGermany
  3. 3.Colorado State UniversityFort CollinsUSA
  4. 4.Boǧaziçi UniversityIstanbulTurkey
  5. 5.University of PennsylvaniaPhiladelphiaUSA
  6. 6.University of HawaiiHonoluluUSA

Personalised recommendations