Advertisement

Cellular Reprogramming

  • Domenico Sgariglia
  • Alessandra Jordano Conforte
  • Luis Alfredo Vidal de Carvalho
  • Nicolas Carels
  • Fabricio Alves Barbosa da SilvaEmail author
Chapter
Part of the Computational Biology book series (COBO, volume 27)

Abstract

With cellular reprogramming, it is possible to convert a cell from one phenotype to another without necessarily passing through a pluripotent state. This perspective is opening many interesting fields in the world of research and biomedical applications. This essay provides a concise description of the purpose of this technique, its evolution, mathematical models used, and applied methodologies. As examples, four areas in the biomedical field where cellular reprogramming can be applied with interesting perspectives are illustrated: diseases modeling, drug discovery, precision medicine, and regenerative medicine. Furthermore, the use of ordinary differential equations, Bayesian network, and Boolean network is described in these contexts. These strategies of mathematical modeling are the three main types that are applied in gene regulatory networks to analyze the dynamic interactions between their nodes. Ultimately, their application in disease research is discussed considering their benefits and limitations.

Notes

Acknowledgment

This study was supported by fellowships from CAPES to D.S. and from the Oswaldo Cruz Institute (https://pgbcs.ioc.fiocruz.br/) to A.C.

References

  1. 1.
    Waddington C. The strategy of the genes: a discussion of some aspects of theoretical biology. London: George Allen and Unwin; 1957. 262 ppGoogle Scholar
  2. 2.
    Waddington C. Organisers and genes. Cambridge: Cambridge University Press; 1940.Google Scholar
  3. 3.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefGoogle Scholar
  4. 4.
    Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol. 1963;62(3):327–36.CrossRefGoogle Scholar
  5. 5.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.CrossRefGoogle Scholar
  6. 6.
    Waddington CH. Towards a theoretical biology. Nature. 1968;218(5141):525–7.CrossRefGoogle Scholar
  7. 7.
    Waddington CH. An introduction to modern genetics. New York: The Macmillan Company; 1939.Google Scholar
  8. 8.
    Huang S, Eichler G, Bar-yam Y, Ingber DE. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett. 2005;94(12):128701.CrossRefGoogle Scholar
  9. 9.
    Huang S, Ernberg I, Kauffman S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol. 2009;20(7):869–76.CrossRefGoogle Scholar
  10. 10.
    Lang AH, Li H, Collins JJ, Mehta P. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. Morozov AV., editor. PLoS Comput Biol. 2014;10(8):e1003734.CrossRefGoogle Scholar
  11. 11.
    Seah Y, EL Farran C, Warrier T, Xu J, Loh Y-H. Induced pluripotency and gene editing in disease modelling: perspectives and challenges. Int J Mol Sci. 2015;16(12):28614–34.CrossRefGoogle Scholar
  12. 12.
    Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.CrossRefGoogle Scholar
  13. 13.
    Ding S, Wang W. Recipes and mechanisms of cellular reprogramming: a case study on budding yeast Saccharomyces cerevisiae. BMC Syst Biol. 2011;5(1):50.CrossRefGoogle Scholar
  14. 14.
    del Sol A, Buckley NJ. Concise review: a population shift view of cellular reprogramming. Stem Cells. 2014;32(6):1367–72.CrossRefGoogle Scholar
  15. 15.
    Mall M, Wernig M. The novel tool of cell reprogramming for applications in molecular medicine. J Mol Med. 2017;95(7):695–703.CrossRefGoogle Scholar
  16. 16.
    Dezonne RS, Sartore RC, Nascimento JM, Saia-Cereda VM, Romão LF, Alves-Leon SV, et al. Derivation of functional human astrocytes from cerebral organoids. Sci Rep. 2017;7:45091.CrossRefGoogle Scholar
  17. 17.
    Kawser Hossain M, Abdal Dayem A, Han J, Kumar Saha S, Yang G-M, Choi HY, et al. Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci. 2016;17(2):256.CrossRefGoogle Scholar
  18. 18.
    Hamazaki T, El Rouby N, Fredette NC, Santostefano KE, Terada N. Concise review: induced pluripotent stem cell research in the era of precision medicine. Stem Cells. 2017;35(3):545–50.CrossRefGoogle Scholar
  19. 19.
    Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.CrossRefGoogle Scholar
  20. 20.
    Hemmi JJ, Mishra A, Hornsby PJ. Overcoming barriers to reprogramming and differentiation in nonhuman primate induced pluripotent stem cells. Primate Biol. 2017;4(2):153–62.CrossRefGoogle Scholar
  21. 21.
    Halley-Stott RP, Pasque V, Gurdon JB. Nuclear reprogramming. Development. 2013;140(12):2468–71.CrossRefGoogle Scholar
  22. 22.
    Takahashi K. Cellular reprogramming. Cold Spring Harb Perspect Biol. 2014;6(2):a018606.CrossRefGoogle Scholar
  23. 23.
    D’urso A, Brickner J. Mechanisms of epigenetic memory. Trends Genet. 2014;30(6):230–6.CrossRefGoogle Scholar
  24. 24.
    Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–4.CrossRefGoogle Scholar
  25. 25.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.CrossRefGoogle Scholar
  26. 26.
    Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450(7169): 497–502.CrossRefGoogle Scholar
  27. 27.
    Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science. 2001;292(5517):740–3.CrossRefGoogle Scholar
  28. 28.
    Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature. 2010;465(7299):704–12.CrossRefGoogle Scholar
  29. 29.
    Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS, et al. A predictive computational framework for direct reprogramming between human cell types. Nat Genet. 2016;48(3):331–5.CrossRefGoogle Scholar
  30. 30.
    Forrest ARR, Kawaji H, Rehli M, Kenneth Baillie J, de Hoon MJL, Haberle V, et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70.CrossRefGoogle Scholar
  31. 31.
    Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012;41(D1):D808–15.CrossRefGoogle Scholar
  32. 32.
    Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009;41(5):553–62.CrossRefGoogle Scholar
  33. 33.
    Cao J, Qi X, Zhao H. Modeling gene regulation networks using ordinary differential equations. Methods Mol Biol. 2012:185–97.Google Scholar
  34. 34.
    Mitra MK, Taylor PR, Hutchison CJ, McLeish TCB, Chakrabarti B. Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes. J R Soc Interface. 2014;11(100):20140706.CrossRefGoogle Scholar
  35. 35.
    Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;74(3):601–20.CrossRefGoogle Scholar
  36. 36.
    Chang R, Shoemaker R, Wang W. Systematic search for recipes to generate induced pluripotent stem cells. PLOS Comput Biol Publ Libr of Sci. 2011;7(12):e1002300.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Xiao Y. A tutorial on analysis and simulation of Boolean gene regulatory network models. Curr Genomics. 2009;10(7):511–25.CrossRefGoogle Scholar
  38. 38.
    Crespo I, Perumal TM, Jurkowski W, del Sol A. Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst Biol. 2013;7(1):140.CrossRefGoogle Scholar
  39. 39.
    Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W, et al. A global map of human gene expression. Nat Biotechnol. 2010;28(4):322–4.CrossRefGoogle Scholar
  40. 40.
    Crespo I, del Sol A. A general strategy for cellular reprogramming: the importance of transcription factor cross-repression. Stem Cells. 2013;31(10):2127–35.CrossRefGoogle Scholar
  41. 41.
    Crespo I, Krishna A, Le Bechec A, del Sol A. Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states. Nucleic Acids Res. 2013;41(1):e8.CrossRefGoogle Scholar
  42. 42.
    Cornelius SP, Kath WL, Motter AE. Realistic control of network dynamics. Nat Commun Nat Publ Group. 2013;4:1942.CrossRefGoogle Scholar
  43. 43.
    Zickenrott S, Angarica VE, Upadhyaya BB, Sol A. Prediction of disease – gene – drug relationships following a differential network analysis. Cell Death Dis Nat Publ Group. 2016;7(1):e2040–12.CrossRefGoogle Scholar
  44. 44.
    Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406–17.CrossRefGoogle Scholar
  45. 45.
    Jonsson PF, Bates PA. Global topological features of cancer proteins in the human interactome. Bioinformatics. 2006;22(18):2291–7.CrossRefGoogle Scholar
  46. 46.
    Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, TNC W. Malaria. Nat Rev Dis Prim. Macmillan Publishers Limited. 2017;3:17050.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Domenico Sgariglia
    • 1
  • Alessandra Jordano Conforte
    • 2
  • Luis Alfredo Vidal de Carvalho
    • 3
  • Nicolas Carels
    • 2
  • Fabricio Alves Barbosa da Silva
    • 4
    Email author
  1. 1.Programa de Engenharia de Sistemas e ComputaçãoCOPPE-UFRJRio de JaneiroBrazil
  2. 2.Laboratório de Modelagem de Sistemas Biológicos, Centro de Desenvolvimento Tecnológico em SaúdeFundação Oswaldo CruzRio de JaneiroBrazil
  3. 3.Departamento de Medicina Preventiva, Faculdade de MedicinaUFRJRio de JaneiroBrazil
  4. 4.Laboratório de Modelagem Computacional de Sistemas Biológicos, Programa de Computação CientíficaFundação Oswaldo CruzRio de JaneiroBrazil

Personalised recommendations