Modeling Gene Transcriptional Regulation: A Primer

  • Marcelo Trindade dos SantosEmail author
  • Ana Paula Barbosa do Nascimento
  • Fernando Medeiros Filho
  • Fabricio Alves Barbosa da Silva
Part of the Computational Biology book series (COBO, volume 27)


The main goal of Systems Biology nowadays, from a broad perspective, is to explain how a living organism performs its basic activities of growth, maintenance, and reproduction. To attain this objective, investigation on a living phenomenon spans at least three levels of interactions: metabolic, transcriptional regulation, and signaling. A common aspect within these levels is biological phenomena control. In this text, we present an introduction to transcriptional regulation and its mathematical and computational modeling. From ubiquitous carbon source uptake to antibiotic resistance mechanisms exhibited by some bacteria, description of biological phenomena can always be associated with a certain control level, which is, directly or not, associated with transcriptional regulation. Our contribution here is to make explicit what are the consequences of making a transition from verbal (and visual) descriptive biological language to predictive domains of mathematical and computational modeling, showing what are the limitations and advantages this transition can imply.


  1. 1.
    Hwang S, Kim CY, Ji SG, Go J, Kim H, Yang S, et al. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci Rep. 2016;6:26223.CrossRefGoogle Scholar
  2. 2.
    Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961;3:318–56.CrossRefGoogle Scholar
  3. 3.
    Watson JD, Crick FH. The structure of DNA. Cold Spring Harb Symp Quant Biol. 1953;18:123–31.CrossRefGoogle Scholar
  4. 4.
    Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662–4.CrossRefGoogle Scholar
  5. 5.
    Leussler A, Van Ham P. Combinational systems. In: Thomas R, editor. Kinetic logic: a Boolean approach to the analysis of complex regulatory systems, vol. 29. Berlin: Springer Science & Business Media; 2013. p. 62–85.CrossRefGoogle Scholar
  6. 6.
    Clancy S. DNA transcription. Nat Educ. 2008;1(1):41.MathSciNetGoogle Scholar
  7. 7.
    Zheng D, Constantinidou C, Hobman JL, Minchin SD. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res. 2004;32(19):5874–93.CrossRefGoogle Scholar
  8. 8.
    Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610.CrossRefGoogle Scholar
  9. 9.
    El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10):1683–706.CrossRefGoogle Scholar
  10. 10.
    Halford SE, Marko JF. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 2004;32(10):3040–52.CrossRefGoogle Scholar
  11. 11.
    de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9(1):67–103.CrossRefGoogle Scholar
  12. 12.
    Vijesh N, Chakrabarti SK, Sreekumar J. Modeling of gene regulatory networks: a review. J Biomed Sci Eng. 2013;6(02):223.CrossRefGoogle Scholar
  13. 13.
    Le Novère N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet. 2015;16(3):146–58.CrossRefGoogle Scholar
  14. 14.
    Maraziotis IA, Dragomir A, Thanos D. Gene regulatory networks modelling using a dynamic evolutionary hybrid. BMC Bioinf. 2010;11:140.CrossRefGoogle Scholar
  15. 15.
    Veliz-Cuba A, Stigler B. Boolean models can explain bistability in the lac operon. J Comput Biol. 2011;18(6):783–94.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A. Multistability in the lactose utilization network of Escherichia coli. Nature. 2004;427(6976):737–40.CrossRefGoogle Scholar
  17. 17.
    Santillán M. Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate. Biophys J. 2008;94(6):2065–81.CrossRefGoogle Scholar
  18. 18.
    Crespo I, Perumal TM, Jurkowski W, del Sol A. Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst Biol. 2013;7:140.CrossRefGoogle Scholar
  19. 19.
    Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A. 2003;100(21):11980–5.CrossRefGoogle Scholar
  20. 20.
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298(5594):824–7.CrossRefGoogle Scholar
  21. 21.
    Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet. 2002;31(1):64–8.CrossRefGoogle Scholar
  22. 22.
    Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8(6): 450–61.CrossRefGoogle Scholar
  23. 23.
    Remy E, Ruet P. From minimal signed circuits to the dynamics of Boolean regulatory networks. Bioinformatics. 2008;24(16):i220–i6.CrossRefGoogle Scholar
  24. 24.
    Covert MW, Schilling CH, Palsson B. Regulation of gene expression in flux balance models of metabolism. J Theor Biol. 2001;213(1):73–88.CrossRefGoogle Scholar
  25. 25.
    Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics. 2008;24(18):2044–50.CrossRefGoogle Scholar
  26. 26.
    Covert MW. Fundamentals of systems biology: from synthetic circuits to whole-cell models. Boca Raton: CRC Press; 2017.Google Scholar
  27. 27.
    Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150(2):389–401.CrossRefGoogle Scholar
  28. 28.
    Silva FAB, Filho FM, Merigueti T, Giannini T, Brum R et al. Computational modeling of multidrug-resistant bacteria. In: Theoretical and applied aspects of systems biology. Springer; 2018.Google Scholar
  29. 29.
    Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessières P, Aymerich S, et al. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis. BMC Syst Biol. 2008;2:20.CrossRefGoogle Scholar
  30. 30.
    Galán-Vásquez E, Luna B, Martínez-Antonio A. The regulatory network of Pseudomonas aeruginosa. Microb Inform Exp. 2011;1(1):3.CrossRefGoogle Scholar
  31. 31.
    Ravcheev DA, Best AA, Sernova NV, Kazanov MD, Novichkov PS, Rodionov DA. Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria. BMC Genomics. 2013;14:94.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcelo Trindade dos Santos
    • 1
    Email author
  • Ana Paula Barbosa do Nascimento
    • 2
  • Fernando Medeiros Filho
    • 2
  • Fabricio Alves Barbosa da Silva
    • 2
  1. 1.National Laboratory for Scientific Computation, LNCC/MCTICPetrópolis, RJBrazil
  2. 2.Fundação Oswaldo Cruz - FIOCRUZRJBrazil

Personalised recommendations