Advertisement

Mathematical-Computational Modeling in Behavior’s Study of Repetitive Discharge Neuronal Circuits

  • Celia Martins Cortez
  • Maria Clicia Stelling de CastroEmail author
  • Vanessa de Freitas Rodrigues
  • Camila Andrade Kalil
  • Dilson Silva
Chapter
Part of the Computational Biology book series (COBO, volume 27)

Abstract

Mathematical-computational modeling is a tool that has been widely used in the field of Neuroscience. Despite considerable advances of Physiological Sciences, the neuronal mechanisms involved in the abilities of central nervous system remain obscure, but they can be revealed through modeling. Significant amount of experimental data already available has facilitated the development of models that combine experimentation with theory. They allow to evaluate hypotheses and to seek understanding of neuronal circuit functioning capable of explaining neurophysiological deficits. To model the behavior of repetitive discharge of neuronal circuits, we have used differential equations, graph theory, and other mathematical methods. Through computational simulations, using programs developed in C and C ++ language and neurophysiological data obtained in the literature, we can test the model’s behavior in face of numerical variations of their parameters, trying to observe their characteristics.

References

  1. 1.
    Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(4):312.  https://doi.org/10.1038/nrn2575.CrossRefGoogle Scholar
  2. 2.
    Cooper GM, Hausman RE. The cell: a molecular approach. Q Rev Biol. 2007;82(1):44. Fourth Edition. The University of Chicago Press. ISSN 0-87893-219-4.  https://doi.org/10.1086/ 513338.
  3. 3.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–24. American Chemical Society. ISSN 1520-6106.  https://doi.org/10.1021/jp071097f.CrossRefGoogle Scholar
  4. 4.
    Levitan IB, Kaczmarek LK. The neuron: cell and molecular biology. Oxford: Oxford University Press; 2002.Google Scholar
  5. 5.
    Cortez CM, Silva D. Fisiologia Aplicada a Psicologia. Guanabara Koogan. 1a. Rio de Janeiro: Edição; 2008.Google Scholar
  6. 6.
    Dai Z, Yan C, Li K, Wang Z, Wang J, Cao M, Lin Q, Shu N, Xia M, Bi Y, He Y. Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s disease. Cereb Cortex. 2014;25(10):3723–42. Oxford University PressCrossRefGoogle Scholar
  7. 7.
    Sorger PK, Lopez C, Flusberg D, Eydgahi H, Bachman J, Sims J, Chen W, Spencer S, Gaudet S. Measuring and modeling life-death decisions in single cells. FASEB J. 2012; (26), no. 1 Supplement 228.1. Federation of American Societies for Experimental Biology.Google Scholar
  8. 8.
    Tao H, Guo S, Ge T, Kendrick KM, Xue Z, Liu Z, Feng J. Depression uncouples brain hate circuit. Mol Psychiatry. 2011;18:101–11.  https://doi.org/10.1038/mp.2011.127.CrossRefGoogle Scholar
  9. 9.
    Richardson RJ, Blundon JA, Bayazitov IT, Zakharenko SS. Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. J Neurosci. 2009;29(20):6406–17.  https://doi.org/10.1523/JNEUROSCI.0258-09.CrossRefGoogle Scholar
  10. 10.
    Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res. 2002;135:69–74.  https://doi.org/10.1016/S0166-4328 (02)00157-2.CrossRefGoogle Scholar
  11. 11.
    Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8:418–25.  https://doi.org/10.1016/j.tics.2004. 07.008.CrossRefGoogle Scholar
  12. 12.
    Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain networks. PLoS One. 2007;2:e1049.CrossRefGoogle Scholar
  13. 13.
    Pinto TM, Wedemann RS, Cortez CM. Modeling the electric potential across neuronal membranes: the effect of fixed charges on spinal ganglion neurons and neoroblastoma cells. PLoS One. 2014;9(5):e96194.CrossRefGoogle Scholar
  14. 14.
    Cardoso FRG, Cruz FAO, Silva D, Cortez CM. Computational modeling of synchronization process of the circadian timing system of mamals. Biol Cybern. 2009;100:385–93.CrossRefGoogle Scholar
  15. 15.
    Cardoso FRG, Cruz FAO, Silva D, Cortez CM. A simple model for the circadian timing system of Mammals. Braz J Med Biol Res. 2009;42:122–7.CrossRefGoogle Scholar
  16. 16.
    Velarde MG, Nekorkin VI, Kazantsev VB, Makarenko VI, Llinás R. Modeling inferior olive neuron dynamics. Neural Netw. 2002;15:5–10.  https://doi.org/10.1016/S0893-6080(01) 00130-7.CrossRefGoogle Scholar
  17. 17.
    Ingalls BP. Mathematical modelling in systems biology: an introduction. 2015. Available http://www.math.uwaterloo.ca/~bingalls/MMSB/MMSB_w_solutions.pdf. Accessed Oct 2017.
  18. 18.
    Dalcin BLG, Cruz FAO, Cortez CM, Passos EL. Applying backpropagation neural network in the control of medullary reflex pattern. International conference of computational methods in science and engineering (ICCMSE 2015). Athens. 2015;1702:130006–130006-4.Google Scholar
  19. 19.
    Dalcin BLG, Cruz FAO, Cortez-Maghelly C, Passos EL. Computer modeling of a spinal reflex circuit. Braz J Phys. 2005;4(35):987–94.CrossRefGoogle Scholar
  20. 20.
    Cruz FAO, Cortez CM. Computer simulation of a central pattern generator via Kuramoto model. Physica A. 2005;353:258–70.CrossRefGoogle Scholar
  21. 21.
    Cruz FAO, Silva D, Cortez CM. Simulation of a spinal reflex circuit model controlled by a central pattern generator. Far East J Appl Math. 2008;33:307–36.MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hadley JA, Kraguljac NV, White DM, Ver Hoef L, Tabora J, Lahti AC. Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory. NPJ Schizophr. 2016;2:16014.  https://doi.org/10.1038/npjschz.2016.14.CrossRefGoogle Scholar
  23. 23.
    Stobb M, Peterson JM, Mazzag B, Gahtan E. Graph theoretical model of a sensorimotor connectome in zebrafish. PLoS One. 2012;7(5):e37292.CrossRefGoogle Scholar
  24. 24.
    Rodrigues VF, Castro MCS, Wedemann RS, Cortez CM. A model for reverberating circuits with controlled feedback. AIP Conference Proceedings 2015; 1702:130005. Published by the AIP Publishing.  https://doi.org/10.1063/1.4938912.
  25. 25.
    Hecht-Nielsen R. Neurocomputing. Reading: Addison-Wesley Publish Co; 1990.  https://doi.org/10.1038/359463a0.CrossRefGoogle Scholar
  26. 26.
    Brooks RA. Elephants don’t play chess. Robot Auton Syst. 1990;6:3–15.CrossRefGoogle Scholar
  27. 27.
    Nocks L. The robot: the life story of a technology. Westport: Greenwood Publishing Group; 2007.Google Scholar
  28. 28.
    Johnson LR, Ledoux JE, Doyère V. Hebbian reverberations in emotional memory micro circuits. Front Neurosci. 2009;3:198–205.  https://doi.org/10.3389/neuro.01.027.CrossRefGoogle Scholar
  29. 29.
    Di Lazzaro V, Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circ. 2013;7:18.  https://doi.org/10.3389/fncir.2013.00018.CrossRefGoogle Scholar
  30. 30.
    Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Amsterdam: Elsevier Saunders; 2006.Google Scholar
  31. 31.
    Kalil CA, Castro MCS, Cortez CM. Computer model of reverberant and parallel circuit coupling. International Conference of Computational Methods in Science and Engineering (ICCMSE 2017). AIP Conference Proceedings. 2017. Published by the AIP Publishing.Google Scholar
  32. 32.
    Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319:1543–6.CrossRefGoogle Scholar
  33. 33.
    Takeuchi T, Duszkiewicz AJ, Morris RGM. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130288.CrossRefGoogle Scholar
  34. 34.
    Walsh IB, Van Den Berg RJ, Marani E, Rietveld WJ. Spontaneous and stimulated firing in cultured rat suprachiasmatic neurons. Brain Res. 1992;588:120–31.CrossRefGoogle Scholar
  35. 35.
    Ef B, Barret JN, Crill E. Voltage-sensitive outward currents in cat motoneurones. J Physiol. 1980;304:251–76.CrossRefGoogle Scholar
  36. 36.
    Kim YI, Dudek FE. Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input. J Physiol. 1993;464:229–43.CrossRefGoogle Scholar
  37. 37.
    Kim YI, Dudek FE. Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: inhibitory synaptic mechanisms. J Physiol. 1992;458:247–60.CrossRefGoogle Scholar
  38. 38.
    Carp JS. Physiological properties of primate lumbar motoneurons. J Neurophysiol. 1992;68:1121–32.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Celia Martins Cortez
    • 1
  • Maria Clicia Stelling de Castro
    • 1
    Email author
  • Vanessa de Freitas Rodrigues
    • 1
  • Camila Andrade Kalil
    • 1
  • Dilson Silva
    • 1
  1. 1.Universidade do Estado do Rio de JaneiroUERJ – Rua São Francisco XavierRio de JaneiroBrazil

Personalised recommendations