System Biology to Access Target Relevance in the Research and Development of Molecular Inhibitors

  • Larissa Catharina
  • Marcio Argollo de Menezes
  • Nicolas CarelsEmail author
Part of the Computational Biology book series (COBO, volume 27)


This review focuses on how system biology may assist techniques that are used in pharmacological research, such as high-throughput screening, high-throughput analytical characterization of biological samples, preclinical and clinical trials, as well as targets and drug validation in order to reach patients at the lowest possible cost in a translational perspective. In signaling networks, targets can be assessed through topological criteria such as their connectivity and/or centrality. In metabolic networks, the relevance of a target for drug development may rather be assessed through some sort of enzymatic specificity resulting from remote homology, analogy, or specificity in its strict sense. The concept of specificity is especially valuable in the context of a host-parasite relationship where targeting a protein specific of a parasite compared to its host is expected to minimize the noxious collateral effects of the inhibitor to the host. The relevance of putative molecular target must be proven through bench and animal validations prior to going through clinical trials. Flux balance analysis and other modeling methods of system biology enable to assess whether a molecular target can be considered as pathway’s choke or not in a network context, which may facilitate the decision of developing drugs for it.



This study was supported by a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior ( to LCC.


  1. 1.
    Knight-Schrijver VR, Chelliah V, Cucurull-Sanchez L, Le Novère N. The promises of quantitative systems pharmacology modelling for drug development. Comput Struct Biotechnol J. 2016;14:363–70.CrossRefGoogle Scholar
  2. 2.
    Arrowsmith J. A decade of change. Nat Rev Drug Discov. 2012;11(1):17–8.CrossRefGoogle Scholar
  3. 3.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–14.CrossRefGoogle Scholar
  4. 4.
    Butcher EC. Can cell systems biology rescue drug discovery? Nat Rev Drug Discov. 2005;4(6):461–7.CrossRefGoogle Scholar
  5. 5.
    Osterloh IH. The discovery and development of Viagra® (sildenafil citrate). In: Dunzendorfer U, editor. Sildenafil. Milestones in drug therapy MDT. Basel: Birkhäuser; 2004. Scholar
  6. 6.
    Priest BT, Erdemli G. Phenotypic screening in the 21st century. Front Pharmacol. 2014;5:264.CrossRefGoogle Scholar
  7. 7.
    Kaelin WG Jr. Common pitfalls in preclinical cancer target validation. Nat Rev Cancer. 2017;17:425–40.CrossRefGoogle Scholar
  8. 8.
    Lee J, Bogyo M. Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol. 2013;17(1):118–26.CrossRefGoogle Scholar
  9. 9.
    Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.CrossRefGoogle Scholar
  10. 10.
    Hopkins AL, Richard Bickerton G, Carruthers IM, Boyer SK, Rubin H, Overington JP. Rapid analysis of pharmacology for infectious diseases. Curr Top Med Chem. 2011;11(10):1292–300.CrossRefGoogle Scholar
  11. 11.
    Soldatow VY, LeCluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res. 2013;2(1):23–39.CrossRefGoogle Scholar
  12. 12.
    Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol. 2014;25:45–50.CrossRefGoogle Scholar
  13. 13.
    Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34(9):722–32.CrossRefGoogle Scholar
  14. 14.
    Andrade EL, Bento AF, Cavalli J, Oliveira SK, Freitas CS, Marcon R, et al. Non-clinical studies required for new drug development-part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies. Braz J Med Biol Res. 2016;49(11):e5644.CrossRefGoogle Scholar
  15. 15.
    Denayer T, Stöhr T, Van Roy M. Animal models in translational medicine: validation and prediction. New Horizons Transl Med. 2014;2(1):5–11.Google Scholar
  16. 16.
    Wermuth CG. Multitargeted drugs: the end of the “one-target-one-disease”philosophy? Drug Discov Today. 2004;9(19):826–7.CrossRefGoogle Scholar
  17. 17.
    Masoudi-Nejad A, Mousavian Z, Bozorgmehr JH. Drug-target and disease networks: polypharmacology in the post-genomic era. In silico Pharmacol. 2013;1(1):17.CrossRefGoogle Scholar
  18. 18.
    Ágoston V, Csermely P, Pongor S. Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys Rev E. 2005;71(5):51909.CrossRefGoogle Scholar
  19. 19.
    Winter GE, Rix U, Carlson SM, Gleixner KV, Grebien F, Gridling M, et al. Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML. Nat Chem Biol. 2012;8(11):905–12.CrossRefGoogle Scholar
  20. 20.
    Chen S, Jiang H, Cao Y, Wang Y, Hu Z, Zhu Z, et al. Drug target identification using network analysis: taking active components in Sini decoction as an example. Sci Rep. 2016;6.
  21. 21.
    Kinch MS, Haynesworth A, Kinch SL, Hoyer D. An overview of FDA-approved new molecular entities: 1827–2013. Drug Discov Today. 2014;19(8):1033–9.CrossRefGoogle Scholar
  22. 22.
    Winkler H. Target validation requirements in the pharmaceutical industry. Targets. 2003;2(3):69–71.CrossRefGoogle Scholar
  23. 23.
    Milligan PA, Brown MJ, Marchant B, Martin SW, Graaf PH, Benson N, et al. Model-based drug development: a rational approach to efficiently accelerate drug development. Clin Pharmacol Ther. 2013;93(6):502–14.CrossRefGoogle Scholar
  24. 24.
    Visser SAG, Manolis E, Danhof M, Kerbusch T. Modeling and simulation at the interface of nonclinical and early clinical drug development. CPT Pharmacometrics Syst Pharmacol. 2013;2(2):1–3.CrossRefGoogle Scholar
  25. 25.
    Visser SAG, Aurell M, Jones RDO, Schuck VJA, Egnell A-C, Peters SA, et al. Model-based drug discovery: implementation and impact. Drug Discov Today. 2013;18(15):764–75.CrossRefGoogle Scholar
  26. 26.
    Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–31.CrossRefGoogle Scholar
  27. 27.
    Visser SAG, Alwis DP, Kerbusch T, Stone JA, Allerheiligen SRB. Implementation of quantitative and systems pharmacology in large pharma. CPT Pharmacometrics Syst Pharmacol. 2014;3(10):1–10.CrossRefGoogle Scholar
  28. 28.
    Kumar N, Hendriks BS, Janes KA, de Graaf D, Lauffenburger DA. Applying computational modeling to drug discovery and development. Drug Discov Today. 2006;11(17):806–11.CrossRefGoogle Scholar
  29. 29.
    Brodland GW. How computational models can help unlock biological systems. Semin Cell Dev Biol. 2015;47–48:62–73.CrossRefGoogle Scholar
  30. 30.
    Bombelles T, Coaker H. Neglected tropical disease research: rethinking the drug discovery model. Future Med Chem. 2015;7(6):693–700.CrossRefGoogle Scholar
  31. 31.
    Al-Lazikani B, Workman P. Unpicking the combination lock for mutant BRAF and RAS melanomas. Cancer Discov. 2013;3(1):14–9.CrossRefGoogle Scholar
  32. 32.
    Workman P, Clarke PA, Al-Lazikani B. Blocking the survival of the nastiest by HSP90 inhibition. Oncotarget. 2016;7(4):3658.CrossRefGoogle Scholar
  33. 33.
    Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL. Global mapping of pharmacological space. Nat Biotechnol. 2006;24(7):805–15.CrossRefGoogle Scholar
  34. 34.
    Catharina L, Lima CR, Franca A, Guimarães ACR, Alves-Ferreira M, Tuffery P, Derreumaux P, et al. A computational methodology to overcome the challenges associated with the search for specific enzyme targets to develop drugs against. Bioinform Biol Insights. 2017;11.
  35. 35.
    Wei D, Jiang X, Zhou L, Chen J, Chen Z, He C, et al. Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching. J Med Chem. 2008;51(24):7882–8.CrossRefGoogle Scholar
  36. 36.
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(suppl 1):D668–72.CrossRefGoogle Scholar
  37. 37.
    Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, et al. SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 2007;36(suppl_1):D919–22.CrossRefGoogle Scholar
  38. 38.
    Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, et al. PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics. 2008;9(1):104.CrossRefGoogle Scholar
  39. 39.
    Hu Z, Chang Y-C, Wang Y, Huang C-L, Liu Y, Tian F, et al. VisANT 4.0: integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res. 2013;41(W1):W225–31.CrossRefGoogle Scholar
  40. 40.
    Kim Kjærulff S, Wich L, Kringelum J, Jacobsen UP, Kouskoumvekaki I, Audouze K, et al. ChemProt-2.0: visual navigation in a disease chemical biology database. Nucleic Acids Res. 2012;41(D1):D464–9.CrossRefGoogle Scholar
  41. 41.
    Yamanishi Y, Kotera M, Moriya Y, Sawada R, Kanehisa M, Goto S. DINIES: drug–target interaction network inference engine based on supervised analysis. Nucleic Acids Res. 2014;42:W39–45.CrossRefGoogle Scholar
  42. 42.
    Hu Q, Deng Z, Tu W, Yang X, Meng Z, Deng Z, et al. VNP: interactive visual network pharmacology of diseases, targets, and drugs. CPT Pharmacometrics Syst Pharmacol. 2014;3(3):1–8.CrossRefGoogle Scholar
  43. 43.
    Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101–13.CrossRefGoogle Scholar
  44. 44.
    Yamada T, Bork P. Evolution of biomolecular networks—lessons from metabolic and protein interactions. Nat Rev Mol Cell Biol. 2009;10(11):791–803.CrossRefGoogle Scholar
  45. 45.
    Yıldırım MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M. Drug—target network. Nat Biotechnol. 2007;25(10):1119–26.CrossRefGoogle Scholar
  46. 46.
    Butina D, Segall MD, Frankcombe K. Predicting ADME properties in silico: methods and models. Drug Discov Today. 2002;7(11):S83–8.CrossRefGoogle Scholar
  47. 47.
    Byvatov E, Fechner U, Sadowski J, Schneider G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci. 2003;43(6):1882–9.CrossRefGoogle Scholar
  48. 48.
    Khedkar SA, Malde AK, Coutinho EC, Srivastava S. Pharmacophore modeling in drug discovery and development: an overview. Med Chem. 2007;3(2):187–97.CrossRefGoogle Scholar
  49. 49.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.CrossRefGoogle Scholar
  50. 50.
    Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res. 2010;39:D1035–41.CrossRefGoogle Scholar
  51. 51.
    Wang JT, Liu W, Tang H, Xie H. Screening drug target proteins based on sequence information. J Biomed Inform. 2014;49:269–74.CrossRefGoogle Scholar
  52. 52.
    Li Z, Han P, You Z-H, Li X, Zhang Y, Yu H, et al. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Sci Rep. 2017;7(1):11174.CrossRefGoogle Scholar
  53. 53.
    Lam MPY, Venkatraman V, Xing Y, Lau E, Cao Q, Ng DCM, et al. Data-driven approach to determine popular proteins for targeted proteomics translation of six organ systems. J Proteome Res. 2016;15(11):4126–34.CrossRefGoogle Scholar
  54. 54.
    Zhu S, Okuno Y, Tsujimoto G, Mamitsuka H. A probabilistic model for mining implicit “chemical compound–gene”relations from literature. Bioinformatics. 2005;21(suppl 2):ii245–51.CrossRefGoogle Scholar
  55. 55.
    Wang Z, Li J, Dang R, Liang L, Lin J. PhIN: a protein pharmacology interaction network database. CPT Pharmacometrics Syst Pharmacol. 2015;4(3):160–6.CrossRefGoogle Scholar
  56. 56.
    Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.CrossRefGoogle Scholar
  57. 57.
    Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. Proc Natl Acad Sci. 2007;104(21):8685–90.CrossRefGoogle Scholar
  58. 58.
    Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24(13):i232–40.CrossRefGoogle Scholar
  59. 59.
    Stockwell BR. Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet. 2000;1(2):116–25.MathSciNetCrossRefGoogle Scholar
  60. 60.
    Dobson CM. Chemical space and biology. Nature. 2004;432(7019):824–8.CrossRefGoogle Scholar
  61. 61.
    Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34:D354–7.CrossRefGoogle Scholar
  62. 62.
    Kundrotas PJ, Zhu Z, Janin J, Vakser IA. Templates are available to model nearly all complexes of structurally characterized proteins. Proc Natl Acad Sci. 2012;109(24):9438–41.CrossRefGoogle Scholar
  63. 63.
    Duran-Frigola M, Mosca R, Aloy P. Structural systems pharmacology: the role of 3D structures in next-generation drug development. Chem Biol. 2013;20(5):674–84.CrossRefGoogle Scholar
  64. 64.
    Yang JO, Oh S, Ko G, Park S-J, Kim W-Y, Lee B, et al. VnD: a structure-centric database of disease-related SNPs and drugs. Nucleic Acids Res. 2010;39(suppl 1):D939–44.Google Scholar
  65. 65.
    Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, et al. SuperCYP: a comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2009;38(suppl 1):D237–43.Google Scholar
  66. 66.
    Fuller JC, Burgoyne NJ, Jackson RM. Predicting druggable binding sites at the protein–protein interface. Drug Discov Today. 2009;14(3):155–61.CrossRefGoogle Scholar
  67. 67.
    Schlecht U, Miranda M, Suresh S, Davis RW, Onge RPS. Multiplex assay for condition-dependent changes in protein–protein interactions. Proc Natl Acad Sci U S A. 2012;109(23):9213–8.CrossRefGoogle Scholar
  68. 68.
    Sperandio O, Reynès CH, Camproux A-C, Villoutreix BO. Rationalizing the chemical space of protein–protein interaction inhibitors. Drug Discov Today. 2010;15(5):220–9.CrossRefGoogle Scholar
  69. 69.
    Koes DR, Camacho CJ. PocketQuery: protein–protein interaction inhibitor starting points from protein–protein interaction structure. Nucleic Acids Res. 2012;40:W387–92.CrossRefGoogle Scholar
  70. 70.
    Taboureau O, Baell JB, Fernández-Recio J, Villoutreix BO. Established and emerging trends in computational drug discovery in the structural genomics era. Chem Biol. 2012;19(1):29–41.CrossRefGoogle Scholar
  71. 71.
    Świderek K, Tuñón I, Moliner V, Bertran J. Computational strategies for the design of new enzymatic functions. Arch Biochem Biophys. 2015;582:68–79.CrossRefGoogle Scholar
  72. 72.
    Copeland RA. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Hoboken: Wiley; 2013.CrossRefGoogle Scholar
  73. 73.
    Robertson JG. Enzymes as a special class of therapeutic target: clinical drugs and modes of action. Curr Opin Struct Biol. 2007;17(6):674–9.CrossRefGoogle Scholar
  74. 74.
    Copeland RA. The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin Drug Discov. 2010;5(4):305–10.CrossRefGoogle Scholar
  75. 75.
    Copeland RA. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. New York: Wiley-Interscience; 2005. p. 178–213.Google Scholar
  76. 76.
    Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1(9):727–30.CrossRefGoogle Scholar
  77. 77.
    Thomas D. A big year for novel drugs approvals [Internet]. 2013. Available from:
  78. 78.
    Bull SC, Doig AJ. Properties of protein drug target classes. PLoS One. 2015;10(3):e0117955.CrossRefGoogle Scholar
  79. 79.
    Burkhard K, Shapiro P. Use of inhibitors in the study of MAP kinases. MAP Kinase Signal Protoc. 2010;661:107–22.CrossRefGoogle Scholar
  80. 80.
    López-Otín C, Bond JS. Proteases: multifunctional enzymes in life and disease. J Biol Chem. 2008;283(45):30433–7.CrossRefGoogle Scholar
  81. 81.
    Rask-Andersen M, Zhang J, Fabbro D, Schiöth HB. Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol Sci. 2014;35(11):604–20.CrossRefGoogle Scholar
  82. 82.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.CrossRefGoogle Scholar
  83. 83.
    Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995;9(8):576–96.CrossRefGoogle Scholar
  84. 84.
    Engh RA, Bossemeyer D. Structural aspects of protein kinase control—role of conformational flexibility. Pharmacol Ther. 2002;93(2):99–111.CrossRefGoogle Scholar
  85. 85.
    Melnikova I, Golden J. Targeting protein kinases. Nat Rev Drug Discov. 2004;3(12):993–4.CrossRefGoogle Scholar
  86. 86.
    Puente XS, Sánchez LM, Overall CM, López-Otín C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet. 2003;4(7):544–58.CrossRefGoogle Scholar
  87. 87.
    Puente XS, López-Otín C. A genomic analysis of rat proteases and protease inhibitors. Genome Res. 2004;14(4):609–22.CrossRefGoogle Scholar
  88. 88.
    Puente XS, Sanchez LM, Gutierrez-Fernandez A, Velasco G, Lopez-Otin C. A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans. 2005;33(Pt 2):331–4.CrossRefGoogle Scholar
  89. 89.
    Rodríguez D, Morrison CJ, Overall CM. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta. 2010;1803(1):39–54.CrossRefGoogle Scholar
  90. 90.
    Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov. 2010;9(9):690–701.CrossRefGoogle Scholar
  91. 91.
    Duffy MJ, McGowan PM, Gallagher WM. Cancer invasion and metastasis: changing views. J Pathol. 2008;214(3):283–93.CrossRefGoogle Scholar
  92. 92.
    Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N Engl J Med. 2012;366(5):454–61.CrossRefGoogle Scholar
  93. 93.
    Fontana JM, Alexander E, Salvatore M. Translational research in infectious disease: current paradigms and challenges ahead. Transl Res. 2012;159(6):430–53.CrossRefGoogle Scholar
  94. 94.
    Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational drug discovery. Biosci Rep. 2017;37(4):BSR20160180.CrossRefGoogle Scholar
  95. 95.
    Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 2014;24(7):1180–92.CrossRefGoogle Scholar
  96. 96.
    Frey KG, Bishop-Lilly KA. Next-generation sequencing for pathogen detection and identification. Methods Microbiol. 2015;42:525–54.CrossRefGoogle Scholar
  97. 97.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.CrossRefGoogle Scholar
  98. 98.
    Carels N, Frias D. A statistical method without training step for the classification of coding frame in transcriptome sequences. Bioinform Biol Insights. 2013;7:35.CrossRefGoogle Scholar
  99. 99.
    Carels N, Gumiel M, da Mota FF, de Carvalho Moreira CJ, Azambuja P. A metagenomic analysis of bacterial microbiota in the digestive tract of triatomines. Bioinform Biol Insights. 2017;11. Scholar
  100. 100.
    de Castro MR, dos Santos TC, Dávila AMR, Senger H, da Silva FAB. SparkBLAST: scalable BLAST processing using in-memory operations. BMC Bioinformatics. 2017;18(1):318.CrossRefGoogle Scholar
  101. 101.
    Beltran PMJ, Federspiel JD, Sheng X, Cristea IM. Proteomics and integrative omic approaches for understanding host–pathogen interactions and infectious diseases. Mol Syst Biol. 2017;13(3):922.CrossRefGoogle Scholar
  102. 102.
    Flórez AF, Park D, Bhak J, Kim B-C, Kuchinsky A, Morris JH, et al. Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinf. 2010;11(1):484.CrossRefGoogle Scholar
  103. 103.
    Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW-N. Metabolic control analysis in drug discovery and disease. Nat Biotechnol. 2002;20(3):243–9.CrossRefGoogle Scholar
  104. 104.
    Haanstra JR, Gerding A, Dolga AM, Sorgdrager FJH, Buist-Homan M, Du Toit F, et al. Targeting pathogen metabolism without collateral damage to the host. Sci Rep. 2017;7:40406.CrossRefGoogle Scholar
  105. 105.
    Capriles PVSZ, Baptista LPR, Guedes IA, Guimarães ACR, Custódio FL, Alves-Ferreira M, et al. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for leishmaniasis treatment. J Mol Graph Model. 2015;55:134–47.CrossRefGoogle Scholar
  106. 106.
    Otto TD, Guimarães ACR, Degrave WM, de Miranda AB. AnEnPi: identification and annotation of analogous enzymes. BMC Bioinf. 2008;9:544.CrossRefGoogle Scholar
  107. 107.
    Piergiorge RM, de Miranda AB, Guimarães AC, Catanho M. Functional analogy in human metabolism: enzymes with different biological roles or functional redundancy? Genome Biol Evol. 2017;9(6):1624–36.CrossRefGoogle Scholar
  108. 108.
    Mondal SI, Ferdous S, Jewel NA, Akter A, Mahmud Z, Islam MM, et al. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157: H7: an in silico approach. Adv Appl Bioinf Chem AABC. 2015;8:49.Google Scholar
  109. 109.
    Su L, Zhou R, Liu C, Wen B, Xiao K, Kong W, et al. Urinary proteomics analysis for sepsis biomarkers with iTRAQ labeling and two-dimensional liquid chromatography–tandem mass spectrometry. J Trauma Acute Care Surg. 2013;74(3):940–5.CrossRefGoogle Scholar
  110. 110.
    Villar M, Ayllón N, Alberdi P, Moreno A, Moreno M, Tobes R, et al. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol Cell Proteomics. 2015;14(12):3154–72.CrossRefGoogle Scholar
  111. 111.
    Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters K-A, Proll SC, et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog. 2010;6(1):e1000719.CrossRefGoogle Scholar
  112. 112.
    Salazar GA, Meintjes A, Mazandu GK, Rapanoël HA, Akinola RO, Mulder NJ. A web-based protein interaction network visualizer. BMC Bioinformatics. 2014;15(1):129.CrossRefGoogle Scholar
  113. 113.
    Pujol A, Mosca R, Farrés J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31(3):115–23.CrossRefGoogle Scholar
  114. 114.
    Hormozdiari F, Salari R, Bafna V, Sahinalp SC. Protein-protein interaction network evaluation for identifying potential drug targets. J Comput Biol. 2010;17(5):669–84.MathSciNetCrossRefGoogle Scholar
  115. 115.
    Holme P, Kim BJ, Yoon CN, Han SK. Attack vulnerability of complex networks. Phys Rev E. 2002;65(5):56109.CrossRefGoogle Scholar
  116. 116.
    Estrada E. Protein bipartivity and essentiality in the yeast protein−protein interaction network. J Proteome Res. 2006;5(9):2177–84.CrossRefGoogle Scholar
  117. 117.
    Kell DB. Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today. 2006;11(23):1085–92.CrossRefGoogle Scholar
  118. 118.
    Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.CrossRefGoogle Scholar
  119. 119.
    Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet. 2008;40(2):181–8.CrossRefGoogle Scholar
  120. 120.
    Kaltdorf M, Srivastava M, Gupta SK, Liang C, Binder J, Dietl A-M, et al. Systematic identification of anti-fungal drug targets by a metabolic network approach. Front Mol Biosci. 2016;3:22.CrossRefGoogle Scholar
  121. 121.
    Joyce AR, Palsson BØ. The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol. 2006;7(3):198–210.CrossRefGoogle Scholar
  122. 122.
    Oberhardt MA, Palsson BØ, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol. 2009;5(1):320.Google Scholar
  123. 123.
    Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–8.CrossRefGoogle Scholar
  124. 124.
    Neidhardt FC. Bacterial growth: constant obsession withdN/dt. J Bacteriol. 1999;181(24):7405–8.Google Scholar
  125. 125.
    Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol. 2010;13(3):344–9.CrossRefGoogle Scholar
  126. 126.
    Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature. 2002;420(6912):186–9.CrossRefGoogle Scholar
  127. 127.
    Joyce AR, Palsson BØ. Predicting gene essentiality using genome-scale in silico models. Microb Gene Essentiality Protoc Bioinf. 2008;416:433–57.CrossRefGoogle Scholar
  128. 128.
    Sylke M. Comprehensive analysis of parasite biology: from metabolism to drug discovery. Vol. 7. Weinheim: Wiley; 2016. 576 p.Google Scholar
  129. 129.
    Tobalina L, Pey J, Rezola A, Planes FJ. Assessment of FBA based gene essentiality analysis in cancer with a fast context-specific network reconstruction method. PLoS One. 2016;11(5):e0154583.CrossRefGoogle Scholar
  130. 130.
    Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, et al. An RNAi-based control of fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 2016;12(10):e1005901.CrossRefGoogle Scholar
  131. 131.
    Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plant–pathogen interactions from molecular toward systems biology perspectives. Plant J. 2017;90(4):720–37.CrossRefGoogle Scholar
  132. 132.
    Aziz N, Zhao Q, Bry L, Driscoll DK, Funke B, Gibson JS, et al. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch Pathol Lab Med. 2014;139(4):481–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Larissa Catharina
    • 1
  • Marcio Argollo de Menezes
    • 2
  • Nicolas Carels
    • 1
    Email author
  1. 1.Laboratório de Modelagem de Sistemas Biológicos, Centro de Desenvolvimento Tecnológico em SaúdeFundação Oswaldo CruzRio de JaneiroBrazil
  2. 2.Instituto de FísicaUniversidade Federal FluminenseRio de JaneiroBrazil

Personalised recommendations