Advertisement

The Challenge of Translating System Biology into Targeted Therapy of Cancer

  • Alessandra Jordano Conforte
  • Milena Magalhães
  • Tatiana Martins Tilli
  • Fabricio Alves Barbosa da Silva
  • Nicolas CarelsEmail author
Chapter
Part of the Computational Biology book series (COBO, volume 27)

Abstract

Translational medicine has been leveraging new technologies and tools for data analysis to promote the development of new treatments. Integration of translational medicine with system biology allows the study of diseases from a holistic perspective. Cancer is a disease of cell regulation that affects genome integrity and ultimately disrupts cell homeostasis. The inter-patient heterogeneity is well characterized, and the scientific community has been seeking for more precise diagnoses in personalized medicine. The use of precision diagnosis would maximize therapeutic efficiency and minimize noxious collateral effects of treatments to patients. System biology addresses such challenge by its ability to identify key genes from dysregulated processes in malignant cells. Currently, the integration of science and technology makes possible to develop new methodologies to analyze a disease as a system. Consequently, a rational approach can be taken in the selection of the most promising treatment for a patient given the multidimensional nature of the cancer system. In this chapter, we describe this integrative journey from system biology investigation toward patient treatment, focusing on molecular diagnosis. We view tumors as unique evolving dynamical systems, and their evaluation at molecular level is important to determine the best treatment options for patients.

Notes

Acknowledgment

This study was supported by fellowships from the Oswaldo Cruz Institute (https://pgbcs.ioc.fiocruz.br/) to A.C., from Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (#573642/2008-7) to M.M., and from Convenio CAPES/Fiocruz (cooperation term 001/2012 CAPESFiocruz) to T.M.T.

References

  1. 1.
    de Magalhães JP. How ageing processes influence cancer. Nat Rev Cancer. 2013;13(5):357–65.CrossRefGoogle Scholar
  2. 2.
    Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefGoogle Scholar
  3. 3.
    Hanahan D. Rethinking the war on cancer. Lancet (London, England). 2014;383(9916):558–63.CrossRefGoogle Scholar
  4. 4.
    Wallace DI, Guo X. Properties of tumor spheroid growth exhibited by simple mathematical models. Front Oncol. 2013;3:51.CrossRefGoogle Scholar
  5. 5.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefGoogle Scholar
  6. 6.
    Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013;13(7):511–8.CrossRefGoogle Scholar
  7. 7.
    Breitkreutz D, Hlatky L, Rietman E, Tuszynski JA. Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl Acad Sci. 2012;109(23):9209–12.CrossRefGoogle Scholar
  8. 8.
    Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics. 2005;21(23):4205–8.CrossRefGoogle Scholar
  9. 9.
    Lim DHK, Maher ER. Genomic imprinting syndromes and cancer. Adv Genet. 2010;70:145–75.Google Scholar
  10. 10.
    de Bruin EC, Taylor TB, Swanton C. Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications. Genome Med. 2013;5(11):101.CrossRefGoogle Scholar
  11. 11.
    EGAPP. Recommendations from the EGAPP Working Group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med. 2009;11(1):66–73.CrossRefGoogle Scholar
  12. 12.
    Abba MC, Lacunza E, Butti M, Aldaz CM. Breast cancer biomarker discovery in the functional genomic age: a systematic review of 42 gene expression signatures. Biomark Insights. 2010;2010(5):103–18.Google Scholar
  13. 13.
    Gabrovska PN, Smith R a, Haupt LM, Griffiths LR. Gene expression profiling in human breast cancer – toward personalised therapeutics? Open Breast Cancer J. 2010;2:46–59.CrossRefGoogle Scholar
  14. 14.
    Fournel M, Sapieha P, Beaulieu N, Besterman JM, Macleod AR. Down-regulation of human DNA- (cytosine-5) methyltransferase induces cell cycle regulators p16 (ink4A) and p21 (WAF/Cip1) by distinct mechanisms. J Biol Chem. 1999;274(34):24250–6.CrossRefGoogle Scholar
  15. 15.
    Rhee I, Jair K-W, Yen R-WC, Lengauer C, Herman JG, Kinzler KW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404(1998):1003–7.CrossRefGoogle Scholar
  16. 16.
    Rhee I, Bachman KE, Park BH, Jair K-W, Yen R-WC, Schuebel KE, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6880):552–6.CrossRefGoogle Scholar
  17. 17.
    Wasson GR, McGlynn AP, McNulty H, O’Reilly SL, McKelvey-Martin VJ, McKerr G, et al. Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. J Nutr. 2006;136(11):2748–53.CrossRefGoogle Scholar
  18. 18.
    Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775(1):138–62.Google Scholar
  19. 19.
    Vandiver AR, Idrizi A, Rizzardi L, Feinberg AP, Hansen KD. DNA methylation is stable during replication and cell cycle arrest. Sci Rep. 2015;5:17911.CrossRefGoogle Scholar
  20. 20.
    Guo F, Li X, Liang D, Li T, Zhu P, Guo H, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15(4):447–58.CrossRefGoogle Scholar
  21. 21.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.CrossRefGoogle Scholar
  22. 22.
    Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFα-p38-MAPK signaling axis. Cancer Res. 2015;75(18):3912–24.CrossRefGoogle Scholar
  23. 23.
    Yang H, Liu Y, Bai F, Zhang J-Y, Ma S-H, Liu J, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013;32(5):663–9.CrossRefGoogle Scholar
  24. 24.
    Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H, et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 2012;103(4):670–6.CrossRefGoogle Scholar
  25. 25.
    Hassler MR, Egger G. Epigenomics of cancer – emerging new concepts. Biochimie. 2012;94(11):2219–30.CrossRefGoogle Scholar
  26. 26.
    Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37–50.CrossRefGoogle Scholar
  27. 27.
    Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.CrossRefGoogle Scholar
  28. 28.
    Qin W, Zhang K, Clarke K, Weiland T, Sauter ER. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr Cancer. 2014;66(2):270–7.CrossRefGoogle Scholar
  29. 29.
    Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011;32(5):772–8.CrossRefGoogle Scholar
  30. 30.
    Philibert RA, Gunter TD, Beach SRH, Brody GH, Madan A. Rapid publication: MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147(5):565–70.CrossRefGoogle Scholar
  31. 31.
    Hartmann O, Spyratos F, Harbeck N, Dietrich D, Fassbender A, Schmitt M, et al. DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res. 2009;15(1):315–23.CrossRefGoogle Scholar
  32. 32.
    Guzmán L, Depix M, Salinas A, Roldán R, Aguayo F, Silva A, et al. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers. Diagn Pathol. 2012;7:87.CrossRefGoogle Scholar
  33. 33.
    Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJL, Khachigian LM, et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell. 2011;20(2):200–13.CrossRefGoogle Scholar
  34. 34.
    Duesberg P, Li R, Fabarius A, Hehlmann R. The chromosomal basis of cancer. Cell Oncol. 2005;27(5–6):293–318.Google Scholar
  35. 35.
    Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(April):2003.Google Scholar
  36. 36.
    Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics. 2015;7(1):127.CrossRefGoogle Scholar
  37. 37.
    Ikehata M, Ogawa M, Yamada Y, Tanaka S, Ueda K, Iwakawa S. Different effects of epigenetic modifiers on the cytotoxicity induced by 5-fluorouracil, irinotecan or oxaliplatin in colon cancer cells. Biol Pharm Bull. 2014;37(1):67–73.CrossRefGoogle Scholar
  38. 38.
    Das DS, Ray A, Das A, Song Y, Tian Z, Oronsky B, et al. A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia. 2016;30(11):2187–97.CrossRefGoogle Scholar
  39. 39.
    Khan ANH, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother. 2008;57(5):647–54.CrossRefGoogle Scholar
  40. 40.
    Marcu LG, Harriss-Phillips WM. In silico modelling of treatment-induced tumour cell kill: developments and advances. Comput Math Methods Med. 2012;2012(i):1–16.zbMATHCrossRefGoogle Scholar
  41. 41.
    Mardinoglu A, Gatto F, Nielsen J. Genome-scale modeling of human metabolism – a systems biology approach. Biotechnol J. 2013;8(9):985–96.CrossRefGoogle Scholar
  42. 42.
    Knauer DJ, Wiley HS, Cunningham DD. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J Biol Chem. 1984;259(9):5623–31.Google Scholar
  43. 43.
    Starbuck C, Lauffenburger DA. Mathematical model for the effects of epidermal growth factor receptor trafficking dynamics on fibroblast proliferation responses. Biotechnol Prog. 1992;8(2):132–43.CrossRefGoogle Scholar
  44. 44.
    Fallon EM, Lauffenburger DA. Computational model for effects of ligand/receptor binding properties on interleukin-2 trafficking dynamics and T cell proliferation response. Biotechnol Prog. 2000;16(5):905–16.CrossRefGoogle Scholar
  45. 45.
    Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I, Jacobson P, et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol. 2013;9:649.CrossRefGoogle Scholar
  46. 46.
    Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;14:5.Google Scholar
  47. 47.
    Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):419–25.CrossRefGoogle Scholar
  48. 48.
    Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol. 2011;7(1):517.CrossRefGoogle Scholar
  49. 49.
    Joyce AR, Palsson BØ. Predicting gene essentiality using genome-scale in silico models. Methods Mol Biol. 2008;416:433–57.CrossRefGoogle Scholar
  50. 50.
    Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep. 2017;7:41241.CrossRefGoogle Scholar
  51. 51.
    Gatto F, Miess H, Schulze A, Nielsen J. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Sci Rep. 2015;5(1):10738.CrossRefGoogle Scholar
  52. 52.
    Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet. 2011;43(7):656–62.CrossRefGoogle Scholar
  53. 53.
    Hyduke DR, Lewis NE, Palsson BØ. Analysis of omics data with genome-scale models of metabolism. Mol BioSyst. 2013;9(2):167–74.CrossRefGoogle Scholar
  54. 54.
    Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150(2):389–401.CrossRefGoogle Scholar
  55. 55.
    Simeonidis E, Price ND. Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol. 2015;42(3):327–38.CrossRefGoogle Scholar
  56. 56.
    Fumiã HF, Martins ML. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes. PLoS One. 2013;8(7):e69008.CrossRefGoogle Scholar
  57. 57.
    Albert I, Thakar J, Li S, Zhang R, Albert R. Boolean network simulations for life scientists. Source Code Biol Med. 2008;3:16.CrossRefGoogle Scholar
  58. 58.
    Chapman MP, Tomlin CJ. Member I. Ordinary differential equations in cancer biology. bioRxiv. 2016;1:2–4.Google Scholar
  59. 59.
    Turner TE, Schnell S, Burrage K. Stochastic approaches for modelling in vivo reactions. Comput Biol Chem. 2004;28(3):165–78.zbMATHCrossRefGoogle Scholar
  60. 60.
    Anderson ARA, Quaranta V. Integrative mathematical oncology. Nat Rev Cancer. 2008;8(3):227–34.CrossRefGoogle Scholar
  61. 61.
    Alarcón T, Byrne HM, Maini PK. A multiple scale model for tumor growth. Multiscale Model Simul. 2005;3(2):440–75.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ. A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol. 2011;7(2):e1001077.MathSciNetCrossRefGoogle Scholar
  63. 63.
    Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol. 2014;10(3):1–13.CrossRefGoogle Scholar
  64. 64.
    Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8(5):e1002518.CrossRefGoogle Scholar
  65. 65.
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRefGoogle Scholar
  66. 66.
    Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, Hanscho M, et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics. 2016;12(7):109.CrossRefGoogle Scholar
  67. 67.
    Garg D, Henrich S, Salo-Ahen OMH, Myllykallio H, Costi MP, Wade RC. Novel approaches for targeting thymidylate synthase to overcome the resistance and toxicity of anticancer drugs. J Med Chem. 2010;53(18):6539–49.CrossRefGoogle Scholar
  68. 68.
    Hebar A, Valent P, Selzer E. The impact of molecular targets in cancer drug development: major hurdles and future strategies. Expert Rev Clin Pharmacol. 2013;6(1):23–34.CrossRefGoogle Scholar
  69. 69.
    Ghaffari P, Mardinoglu A, Asplund A, Shoaie S, Kampf C, Uhlen M, et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci Rep. 2015;5(1):8183.CrossRefGoogle Scholar
  70. 70.
    Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, et al. Self-assembling protein microarrays. Science. 2004;305(5680):86–90.CrossRefGoogle Scholar
  71. 71.
    Yazaki J, Galli M, Kim AY, Nito K, Aleman F, Chang KN, et al. Mapping transcription factor interactome networks using HaloTag protein arrays. Proc Natl Acad Sci U S A. 2016;113(29):E4238–47.CrossRefGoogle Scholar
  72. 72.
    Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010;11:427.CrossRefGoogle Scholar
  73. 73.
    Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582–7.CrossRefGoogle Scholar
  74. 74.
    Chakrabarti CG, De K. Boltzmann entropy: generalization and applications. J Biol Phys. 1997;23(3):163–70.CrossRefGoogle Scholar
  75. 75.
    Schneider TD. A brief review of molecular information theory. Nano Commun Netw. 2010;1(3):173–80.CrossRefGoogle Scholar
  76. 76.
    Banerji CRS, Miranda-Saavedra D, Severini S, Widschwendter M, Enver T, Zhou JX, et al. Cellular network entropy as the energy potential in Waddington’s differentiation landscape. Sci Rep. 2013;3(1):3039.CrossRefGoogle Scholar
  77. 77.
    Carels N, Tilli T, Tuszynski JA. A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases. PLoS One. 2015;10(1):e0115054.CrossRefGoogle Scholar
  78. 78.
    Parise CA, Caggiano V. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J Cancer Epidemiol. 2014;2014:1–11.CrossRefGoogle Scholar
  79. 79.
    Carels N, Tilli TM, Tuszynski JA. Optimization of combination chemotherapy based on the calculation of network entropy for protein-protein interactions in breast cancer cell lines. EPJ Nonlinear Biomed Phys. 2015;3(1):6.CrossRefGoogle Scholar
  80. 80.
    Álvarez-Silva MC, Yepes S, Torres MM, González Barrios AF. Proteins interaction network and modeling of IGVH mutational status in chronic lymphocytic leukemia. Theor Biol Med Model. 2015;12(1):12.CrossRefGoogle Scholar
  81. 81.
    Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization [review]. Nat Rev Genet. 2004;5(2):101–NIL.CrossRefGoogle Scholar
  82. 82.
    Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex networks. Nature. 2000;406(6794):378–82.CrossRefGoogle Scholar
  83. 83.
    Tilli TM, Carels N, Tuszynski JA, Pasdar M. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development. Oncotarget. 2016;7(39):63189–203.CrossRefGoogle Scholar
  84. 84.
    Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–79.CrossRefGoogle Scholar
  85. 85.
    Alegre MM, Robison RA, O’Neill KL. Thymidine kinase 1 upregulation is an early event in breast tumor formation. J Oncol. 2012;2012:1–5.CrossRefGoogle Scholar
  86. 86.
    Chen Y-L, Eriksson S, Chang Z-F. Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. J Biol Chem. 2010;285(35):27327–35.CrossRefGoogle Scholar
  87. 87.
    Di Cresce C, Figueredo R, Ferguson PJ, Vincent MD, Koropatnick J. Combining small interfering RNAs targeting thymidylate synthase and thymidine kinase 1 or 2 sensitizes human tumor cells to 5-fluorodeoxyuridine and pemetrexed. J Pharmacol Exp Ther. 2011;338(3):952–63.CrossRefGoogle Scholar
  88. 88.
    Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL, et al. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res. 2012;14(2):R62.CrossRefGoogle Scholar
  89. 89.
    Korsching E, Packeisen J, Liedtke C, Hungermann D, Wülfing P, van Diest PJ, et al. The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol. 2005;206(4):451–7.CrossRefGoogle Scholar
  90. 90.
    Liu C-Y, Lin H-H, Tang M-J, Wang Y-K. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015;6(18):15966–83.Google Scholar
  91. 91.
    Hodgkinson VC, Agarwal V, ELFadl D, Fox JN, McManus PL, Mahapatra TK, et al. Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J Proteome. 2012;75(9):2745–52.CrossRefGoogle Scholar
  92. 92.
    Kim Y, Kim H, Jang S-W, Ko J. The role of 14-3-3β in transcriptional activation of estrogen receptor α and its involvement in proliferation of breast cancer cells. Biochem Biophys Res Commun. 2011;414(1):199–204.CrossRefGoogle Scholar
  93. 93.
    Akekawatchai C, Roytrakul S, Kittisenachai S, Isarankura-Na-Ayudhya P, Jitrapakdee S. Protein profiles associated with anoikis resistance of metastatic MDA-MB-231 breast cancer cells. Asian Pac J Cancer Prev. 2016;17(2):581–90.CrossRefGoogle Scholar
  94. 94.
    Wilker E, Yaffe MB. 14-3-3 proteins – a focus on cancer and human disease. J Mol Cell Cardiol. 2004;37(3):633–42.CrossRefGoogle Scholar
  95. 95.
    Ortega CE, Seidner Y, Dominguez I. Mining CK2 in cancer. Calogero RA, editor. PLoS One. 2014;9(12):e115609.CrossRefGoogle Scholar
  96. 96.
    Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci. 2015;72(17):3305–22.CrossRefGoogle Scholar
  97. 97.
    Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Forcet C, Cochet C, et al. Regulation of epithelial to mesenchymal transition: CK2β on stage. Mol Cell Biochem. 2011;356(1–2):11–20.CrossRefGoogle Scholar
  98. 98.
    Golden D, Cantley LG. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene. 2015;34(36):4702–12.CrossRefGoogle Scholar
  99. 99.
    Phan L, Chou P-C, Velazquez-Torres G, Samudio I, Parreno K, Huang Y, et al. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 2015;6:7530.CrossRefGoogle Scholar
  100. 100.
    Boudreau A, Tanner K, Wang D, Geyer FC, Reis-Filho JS, Bissell MJ. 14-3-3σ stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc Natl Acad Sci U S A. 2013;110(41):E3937–44.CrossRefGoogle Scholar
  101. 101.
    Kren BT, Unger GM, Abedin MJ, Vogel RI, Henzler CM, Ahmed K, et al. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Breast Cancer Res. 2015;17:19.CrossRefGoogle Scholar
  102. 102.
    Miwa D, Sakaue T, Inoue H, Takemori N, Kurokawa M, Fukuda S, et al. Protein kinase D2 and heat shock protein 90 beta are required for BCL6-associated zinc finger protein mRNA stabilization induced by vascular endothelial growth factor-A. Angiogenesis. 2013;16(3):675–88.CrossRefGoogle Scholar
  103. 103.
    Pallares J, Llobet D, Santacana M, Eritja N, Velasco A, Cuevas D, et al. CK2β is expressed in endometrial carcinoma and has a role in apoptosis resistance and cell proliferation. Am J Pathol. 2009;174(1):287–96.CrossRefGoogle Scholar
  104. 104.
    Kitano H. Biological robustness. Nat Rev Genet. 2004;5(11):826–37.CrossRefGoogle Scholar
  105. 105.
    Kitano H. Towards a theory of biological robustness. Mol Syst Biol. 2007;18:3.Google Scholar
  106. 106.
    Atkinson DM, Clarke MJ, Mladek AC, Carlson BL, Trump DP, Jacobson MS, et al. Using fluorodeoxythymidine to monitor anti-EGFR inhibitor therapy in squamous cell carcinoma xenografts. Head Neck. 2008;30(6):790–9.CrossRefGoogle Scholar
  107. 107.
    Didelot C, Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A, et al. Interaction of heat-shock protein 90β isoform (HSP90β) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation. Cell Death Differ. 2008;15(5):859–66.CrossRefGoogle Scholar
  108. 108.
    Lahat G, Zhu Q-S, Huang K-L, Wang S, Bolshakov S, Liu J, et al. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. Bauer JA, editor. PLoS One. 2010;5(4):e10105.CrossRefGoogle Scholar
  109. 109.
    Cao W, Yang X, Zhou J, Teng Z, Cao L, Zhang X, et al. Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice. Apoptosis. 2010;15(2):230–41.CrossRefGoogle Scholar
  110. 110.
    Dong S, Kang S, Lonial S, Khoury HJ, Viallet J, Chen J. Targeting 14-3-3 sensitizes native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070. Leukemia. 2008;22(3):572–7.CrossRefGoogle Scholar
  111. 111.
    Thompson JM, Nguyen QH, Singh M, Razarenova OV. Approaches to identifying synthetic lethal interactions in cancer. Yale J Biol Med. 2015;88(2):145–55.Google Scholar
  112. 112.
    Stegh AH. Toward personalized cancer nanomedicine – past, present, and future. Integr Biol. 2013 [cited 2016 Jan 11];5(1):48–65.CrossRefGoogle Scholar
  113. 113.
    Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomed Nanotechnol Biol Med. 2009;5(1):8–20.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alessandra Jordano Conforte
    • 1
  • Milena Magalhães
    • 1
  • Tatiana Martins Tilli
    • 1
  • Fabricio Alves Barbosa da Silva
    • 2
  • Nicolas Carels
    • 1
    Email author
  1. 1.Laboratório de Modelagem de Sistemas Biológicos, Centro de Desenvolvimento Tecnológico em SaúdeFundação Oswaldo CruzRio de JaneiroBrazil
  2. 2.Laboratório de Modelagem Computacional de Sistemas Biológicos, Programa de Computação CientíficaFundação Oswaldo CruzRio de JaneiroBrazil

Personalised recommendations