Advertisement

A Computational Proof of Locality in Entanglement

  • Han Geurdes
Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

In this paper, the design and proof of concept (POC) coding of a local hidden variable computer model is presented. The program violates the Clauser-Horne-Shimony-Holt inequality |CHSH| ≤ 2. In our numerical experiment, we find with our local computer program, CHSH \(\approx 1 + \sqrt {2}\).

References

  1. 1.
    Jammer, M.: The Philosophy of Quantum Mechanics. Wiley-Interscience, New York (1974)Google Scholar
  2. 2.
    Merzbacher, E.: Quantum Mechanics. Wiley, New York (1970)Google Scholar
  3. 3.
    Hameka, H.F.: Quantum Mechanics. A Conceptual Approach. Wiley-Interscience, New York (2004)Google Scholar
  4. 4.
    Rae, A.: Quantum Mechanics. IOP, London (2002)zbMATHGoogle Scholar
  5. 5.
    Greiner, W.: Relativistic Quantum Mechanics, Wave Equations, 3rd edn. Springer, Berlin (2000)CrossRefGoogle Scholar
  6. 6.
    Haag, R.: Trying to divide the universe. In: Borowiec, A., Cegla, W., Jancewicz, B., Karowski, W. (eds.) Theoretical Physics Fin de Sciecle. Springer, Berlin (2000)Google Scholar
  7. 7.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete. Phys. Rev. 47, 777–780 (1935)CrossRefGoogle Scholar
  9. 9.
    Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement, pp. 356–369. Princeton University Press, Princeton (1983)Google Scholar
  10. 10.
    Bohm, D.: Quantum Theory, p. 614. Prentice-Hall, New York (1951)Google Scholar
  11. 11.
    Peres, A.: Quantum Theory: Concepts and Methods, pp. 165–172. Kluwer Academic, New York (2002)Google Scholar
  12. 12.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variables theories. Phys. Rev. Lett. 23, 880–884 (1969)CrossRefGoogle Scholar
  13. 13.
    Gill, R.D.: Time, finite statistics, and bells fifth position (2003). arxiv.org/abs/quant-ph/0301059v1Google Scholar
  14. 14.
    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Geurdes, J.F., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory (2017). arXiv:1704.00005Google Scholar
  16. 16.
    Aspect, A.: Proposed experiment to test the nonseparability of quantum mechanics. Phys. Rev. D14, 1944–1955 (1976)Google Scholar
  17. 17.
    Geurdes, J.F.: A probability loophole in the CHSH. Results Phys. 4, 81–82 (2014)CrossRefGoogle Scholar
  18. 18.
    Gill, R.D.: No probability loophole in the CHSHS. Results Phys. 5, 156–157 (2015). http://dx.doi.org/10.1016/j.rinp.2015.06.002 CrossRefGoogle Scholar
  19. 19.
    Geurdes, J.F.: Why one can maintain that there is a probability loophole in the CHSH (2015). arXiv:1508.04798Google Scholar
  20. 20.
    ’t Hooft, G.: How does God play dice? p. 3 (2001). arxiv.org/abs/hep-th/0104219v1Google Scholar
  21. 21.
    Saygin, A.P., Roberts, G., Beber, G.: Comments on “Computing machinery and Intelligence” by Alan Turing. In: Epstein, R., Roberts, G., Poland, G. (eds.) Parsing the Turing Test. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6710-5 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Han Geurdes
    • 1
  1. 1.Geurdes DatascienceDen HaagNetherlands

Personalised recommendations