Advertisement

Classification Problem in a Quantum Framework

  • Enrica Santucci
  • Giuseppe Sergioli
Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

The aim of this paper is to provide a quantum counterpart of the well-known minimum-distance classifier named Nearest Mean Classifier (NMC). In particular, we refer to the following previous works: (1) in Sergioli et al. Sergioli, G., Santucci, E., Didaci, L., Miszczak, J., Giuntini, R.: A quantum-inspired version of the Nearest Mean Classifier. Soft Computing, 22(3), 691–705 (2018). we have introduced a detailed quantum version of the NMC, named Quantum Nearest Mean Classifier (QNMC), for two-dimensional problems, and we have proposed a generalization to arbitrary dimensions; (2) in Sergioli et al. (Int J Theor Phys 56(12):3880–3888, 2017) the n-dimensional problem was analyzed in detail, and a particular encoding for arbitrary n-feature vectors into density operators has been presented. In this paper, we introduce a new promising encoding of arbitrary n-dimensional patterns into density operators, starting from the two-feature encoding provided in Sergioli et al. Sergioli, G., Santucci, E., Didaci, L., Miszczak, J., Giuntini, R.: A quantum-inspired version of the Nearest Mean Classifier. Soft Computing, 22(3), 691–705 (2018). Further, unlike the NMC, the QNMC shows to be not invariant by rescaling the features of each pattern. This property allows us to introduce a free parameter whose variation provides, in some case, an improvement of the QNMC performance. We show experimental results where i) the NMC and QNMC performances are compared on different datasets and ii) the effects of the non-invariance under uniform rescaling for the QNMC are investigated.

Notes

Acknowledgements

This work is supported by the Sardinia Region Project “Time-logical evolution of correlated microscopic system”, LR 7/8/2007 (2015). RAS CRP-55.

References

  1. 1.
    Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Found. Sci. 1 (1), 85–97 (1994)Google Scholar
  2. 2.
    Aerts, D., Gabora, L., Sozzo, S.: Concepts and their dynamics: a quantum-theoretic modeling of human thought. Top. Cogn. Sci. 5(4), 737–772 (2013)Google Scholar
  3. 3.
    Aïmeur, E., Brassard, G.,Gambs, S.: Machine Learning in a Quantum World: Conference of the Canadian Society for Computational Studies of Intelligence. Springer, Berlin (2006)CrossRefGoogle Scholar
  4. 4.
    Caraiman, S., Manta, V.: Image processing using quantum computing. In: 2012 16th International Conference on System Theory, Control and Computing (ICSTCC), pp. 1–6. IEEE, New York (2012)Google Scholar
  5. 5.
    Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, New York (1969)Google Scholar
  6. 6.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)Google Scholar
  7. 7.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. Signal Process. Mag. IEEE 19(6), 12–32 (2002)CrossRefGoogle Scholar
  9. 9.
    Fawcett, T.: An introduction of the ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)Google Scholar
  10. 10.
    Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge University Press, Cambridge (2013)Google Scholar
  11. 11.
    Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Pearson Prentice Hall, Englewood Cliffs (2007)Google Scholar
  12. 12.
    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning (2013). arXiv:1307.0411Google Scholar
  13. 13.
    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)CrossRefGoogle Scholar
  14. 14.
    Manju, A., Nigam, M.J.: Applications of quantum inspired computational intelligence: a survey. Artif. Intell. Rev. 42(1), 79–156 (2014)CrossRefGoogle Scholar
  15. 15.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information - 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)Google Scholar
  16. 16.
    Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42(5), 1089–1099 (2003)Google Scholar
  17. 17.
    Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Phys. Rev. Lett. 113, 130503 (2014)Google Scholar
  18. 18.
    Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2014)CrossRefGoogle Scholar
  19. 19.
    Sergioli, G., Bosyk, G.M., Santucci, E., Giuntini, R.: A quantum-inspired version of the classification problem. Int. J. Theor. Phys. 56(12), 3880–3888 (2017). https://doi.org/10.1007/s10773-017-3371-1 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sergioli, G., Santucci, E., Didaci, L., Miszczak, J., Giuntini, R.: A quantum-inspired version of the Nearest Mean Classifier. Soft Computing, 22(3), 691–705 (2018).CrossRefGoogle Scholar
  21. 21.
    Skurichina, M., Duin, R.P.W.: Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal. Appl. 5(2), 121–135 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tanaka, K., Tsuda, K.: A quantum-statistical-mechanical extension of gaussian mixture model. J. Phys. Conf. Ser. 95(1), 012023 (2008)Google Scholar
  23. 23.
    Trugenberger, C.A.: Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)Google Scholar
  24. 24.
    Wassermann, L.: All of Statistic: A Concise Course in Statistical Inference. Springer Texts in Statistics. Springer, Berlin (2004)Google Scholar
  25. 25.
    Wiebe, N., Kapoor, A., Svore, K.M.: Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput. 15(34), 0318–0358 (2015)Google Scholar
  26. 26.
    Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic, New York (2014)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Enrica Santucci
    • 1
  • Giuseppe Sergioli
    • 1
  1. 1.University of CagliariCagliariItaly

Personalised recommendations