Advertisement

Local Realism Without Hidden Variables

  • Ghenadie N. Mardari
Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

Quantum superposition is a process in which single entities express the effect of many states at the same time. This is difficult to explain with local realist models, because classical objects can only be in one state at a time. So far, the main approach was to invoke a class of hidden variables that might explain the appearance (but not the reality) of superposition effects. Yet, this hypothesis was falsified by the experimental violations of Bell’s inequality. The alternative is to accept the ontological validity of quantum superposition, with an interpretive twist. The single net state, which is equal to the vector sum of many component states, must be described as real. This is not only plausible. It actually avoids the known interpretive pitfalls of quantum mechanics (including the measurement problem and the EPR paradox).

Keywords

Local realism Hidden variables Superposition 

References

  1. 1.
    Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)CrossRefGoogle Scholar
  2. 2.
    Hensen, R., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 526, 682–686 (2015)CrossRefGoogle Scholar
  3. 3.
    Shalm, L.K., et al.: A strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)CrossRefGoogle Scholar
  4. 4.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  5. 5.
    Mardari, G. N., Greenwood, J. A.: Classical sources of non-classical physics: the case of linear superposition. arXiv:quant-ph/0409197 (2013)Google Scholar
  6. 6.
    Howard, D.: Revisiting the Einstein-Bohr dialogue. Iyyun: Jerus. Philoso. Q. 56, 57–90 (2007)Google Scholar
  7. 7.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefGoogle Scholar
  8. 8.
    Afriat, A., Selleri, F.: The Einstein, Podolsky, and Rosen Paradox in Atomic, Nuclear, and Particle Physics. Springer, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Andersson, E., Barnett, S.M., Aspect, A.: Joint measurements of spin, operational locality and uncertainty. Phys. Rev. A. 72, 042104 (2005)CrossRefGoogle Scholar
  10. 10.
    Banik, M., Gazi, M.R., Ghosh, S., Kar, G.: Degree of complementarity determines the nonlocality in quantum mechanics. Phys. Rev. A. 87, 052125 (2013)CrossRefGoogle Scholar
  11. 11.
    Oppenheim, J., Wehner, S.: The uncertainty principle determines the non-locality of quantum mechanics. Science. 330, 1072–1074 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)zbMATHGoogle Scholar
  13. 13.
    Seevinck, M., Uffink, J.: Local commutativity versus Bell inequality violation for entangled states and versus non-violation for separable states. Phys. Rev. A. 76, 042105 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wolf, M.M., Perez-Garcia, D., Fernandez, C.: Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory. Phys. Rev. Lett. 103, 230402 (2009)CrossRefGoogle Scholar
  15. 15.
    Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  16. 16.
    Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw Hill, New York (1966)Google Scholar
  17. 17.
    Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W.: Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)CrossRefGoogle Scholar
  18. 18.
    Khrennikov, A.: Bell-Boole inequality: nonlocality or probabilistic incompatibility of random variables? Entropy. 10, 19–32 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ghenadie N. Mardari
    • 1
  1. 1.Open Worlds ResearchSparksUSA

Personalised recommendations