Molecular Applications in Hematolymphoid Cytology

  • Joerg SchwockEmail author
  • Graeme R. Quest
  • William R. Geddie


Fine needle samples of lymph nodes and extranodal lymphoid tissues are common in cytopathology practice. Diagnosis and classification of hematolymphoid disorders has been an evolving area in cytopathology which has been met, depending on individual mindset and training, both with enthusiasm and doubt by clinicians as well as pathologists. The undeniable advantages of fine needle sampling are rapid assessment, minimal invasiveness, low cost, and limited patient discomfort. However, hematolymphoid cytology specimens require a dedicated, step-by-step evaluation with algorithmic use of ancillary studies guided by a set of differential diagnoses invoked on the basis of morphology. Molecular characteristics have become increasingly important for proper classification of hematolymphoid disorders. Laboratory techniques to gain insight into these molecular alterations have become increasingly available in the form of refined, easy-to-use, affordable, and commercial assays. In particular, in situ hybridization technologies and polymerase chain reaction-based assays are now widely used in clinical laboratories and readily applied particularly in those cases where the two-pronged approach of morphology and immunophenotyping is insufficiently specific to render a clinically actionable diagnosis. New, more comprehensive technologies for molecular characterization such as next-generation sequencing are increasingly employed not only as discovery tools but also to tackle clinical problems of proper disease classification and therapy selection. This chapter is intended to provide the reader with an overview of the commonly used molecular applications in hematolymphoid cytology including selected examples of their use and an introduction to recent developments in the molecular study of neoplastic proliferations of the lymphoid system which may assume greater clinical significance in the near future.


Cytology Lymphoproliferative disease Hematolymphoid Cytogenetics In situ hybridization Ancillary test Clonality Sequencing On-site assessment Laboratory-based triage 


  1. 1.
    Young NA, et al. Fine-needle aspiration biopsy of lymphoproliferative disorders--interpretations based on morphologic criteria alone: results from the College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytopathology. Arch Pathol Lab Med. 2006;130(12):1766–71.PubMedGoogle Scholar
  2. 2.
    Jin M, Wakely PE Jr. Endoscopic/endobronchial ultrasound-guided fine needle aspiration and ancillary techniques, particularly flow cytometry, in diagnosing deep-seated lymphomas. Acta Cytol. 2016;60(4):326–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Hehn ST, Grogan TM, Miller TP. Utility of fine-needle aspiration as a diagnostic technique in lymphoma. J Clin Oncol. 2004;22(15):3046–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Fine-needle aspirate for the evaluation of suspected lymphoma: clinical effectiveness and guidelines. 2015 March 31.
  5. 5.
    Joudeh AA, Shareef SQ, Al-Abbadi MA. Fine-needle aspiration followed by core-needle biopsy in the same setting: modifying our approach. Acta Cytol. 2016;60(1):1–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Safley AM, et al. The value of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis of B-cell non-Hodgkin lymphoma by fine-needle aspiration. Arch Pathol Lab Med. 2004;128(12):1395–403.PubMedGoogle Scholar
  7. 7.
    Cozzolino I, et al. Lymph node and lymphoid organs fine needle aspiration cytology: historical background. Infez Med. 2012;20(Suppl 3):8–11.PubMedGoogle Scholar
  8. 8.
    Hirschfeld H. Über isolierte aleukämische Lymphadenose der Haut. Z Krebsforsch. 1912;11:397–407.CrossRefGoogle Scholar
  9. 9.
    Hu E, et al. Diagnosis of B cell lymphoma by analysis of immunoglobulin gene rearrangements in biopsy specimens obtained by fine needle aspiration. J Clin Oncol. 1986;4(3):278–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Katz RL, et al. The role of gene rearrangements for antigen receptors in the diagnosis of lymphoma obtained by fine-needle aspiration. A study of 63 cases with concomitant immunophenotyping. Am J Clin Pathol. 1991;96(4):479–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Miyahara M, et al. Immunoglobulin gene rearrangement in T-cell-rich reactive pleural effusion of a patient with B-cell chronic lymphocytic leukemia. Acta Haematol. 1996;96(1):41–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Biggar RJ, et al. Direct cytogenetic studies by needle aspiration of Burkitt’s lymphoma in Ghana, West Africa. J Natl Cancer Inst. 1981;67(4):769–76.PubMedGoogle Scholar
  13. 13.
    Kristoffersson U, et al. Cytogenetic studies in non-Hodgkin lymphomas--results from fine-needle aspiration samples. Hereditas. 1985;103(1):63–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Schmitz L, Beneke J, Kubic V. Diagnosis of small non-cleaved cell lymphoma by fine needle aspiration utilizing cytomorphologic features combined with cytogenetic analysis. Acta Cytol. 1997;41(3):759–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Hughes JH, Caraway NP, Katz RL. Blastic variant of mantle-cell lymphoma: cytomorphologic, immunocytochemical, and molecular genetic features of tissue obtained by fine-needle aspiration biopsy. Diagn Cytopathol. 1998;19(1):59–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Cartagena N Jr, et al. Accuracy of diagnosis of malignant lymphoma by combining fine-needle aspiration cytomorphology with immunocytochemistry and in selected cases, Southern blotting of aspirated cells: a tissue-controlled study of 86 patients. Diagn Cytopathol. 1992;8(5):456–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Caraway NP. Strategies to diagnose lymphoproliferative disorders by fine-needle aspiration by using ancillary studies. Cancer. 2005;105(6):432–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Dey P. Role of ancillary techniques in diagnosing and subclassifying non-Hodgkin’s lymphomas on fine needle aspiration cytology. Cytopathology. 2006;17(5):275–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Krishnamurthy S. Applications of molecular techniques to fine-needle aspiration biopsy. Cancer. 2007;111(2):106–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang S, et al. The role of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis and classification of lymphoproliferative disorders on fine-needle aspiration. Cancer Cytopathol. 2010;118(2):105–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Bode B, Tinguely M. Role of cytology in hematopathological diagnostics. Pathologe. 2012;33(4):316–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Swerdlow SH, et al. WHO classifcation of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumours. 4th ed. Lyon: IARC; 2008.Google Scholar
  23. 23.
    Kocjan G. Best practice No. 185. Cytological and molecular diagnosis of lymphoma. J Clin Pathol. 2005;58(6):561–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Young NA, Al-Saleem T. Hematopathologists and cytopathologists: enemies or allies? Diagn Cytopathol. 1999;21(5):305–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Wakely PE Jr. Fine-needle aspiration cytopathology in diagnosis and classification of malignant lymphoma: accurate and reliable? Diagn Cytopathol. 2000;22(2):120–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Swart GJ, et al. Fine needle aspiration biopsy and flow cytometry in the diagnosis of lymphoma. Transfus Apher Sci. 2007;37(1):71–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Frederiksen JK, et al. Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med. 2015;139(2):245–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Young NA, et al. Utilization of fine-needle aspiration cytology and flow cytometry in the diagnosis and subclassification of primary and recurrent lymphoma. Cancer. 1998;84(4):252–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Allen EA, Ali SZ, Mathew S. Lymphoid lesions of the parotid. Diagn Cytopathol. 1999;21(3):170–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Meda BA, et al. Diagnosis and subclassification of primary and recurrent lymphoma. The usefulness and limitations of combined fine-needle aspiration cytomorphology and flow cytometry. Am J Clin Pathol. 2000;113(5):688–99.PubMedCrossRefGoogle Scholar
  31. 31.
    Levine PH, Zamuco R, Yee HT. Role of fine-needle aspiration cytology in breast lymphoma. Diagn Cytopathol. 2004;30(5):332–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Katz RL. Modern approach to lymphoma diagnosis by fine-needle aspiration: restoring respect to a valuable procedure. Cancer. 2005;105(6):429–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Field AS, et al. Assisting cytopathology training in medically under-resourced countries: defining the problems and establishing solutions. Diagn Cytopathol. 2012;40(3):273–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Shetuni B, Lakey M, Kulesza P. Optimal specimen processing of fine needle aspirates of non-Hodgkin lymphoma. Diagn Cytopathol. 2012;40(11):984–6.PubMedCrossRefGoogle Scholar
  35. 35.
    van Hemel BM, Suurmeijer AJ. Effective application of the methanol-based PreservCyt() fixative and the Cellient() automated cell block processor to diagnostic cytopathology, immunocytochemistry, and molecular biology. Diagn Cytopathol. 2013;41(8):734–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Schwock J, Geddie WR. Diagnosis of B-cell non-hodgkin lymphomas with small-/intermediate-sized cells in cytopathology. Pathol Res Int. 2012;2012:164934.CrossRefGoogle Scholar
  37. 37.
    Mathiot C, et al. Fine-needle aspiration cytology combined with flow cytometry immunophenotyping is a rapid and accurate approach for the evaluation of suspicious superficial lymphoid lesions. Diagn Cytopathol. 2006;34(7):472–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Ochs RC, Bagg A. Molecular genetic characterization of lymphoma: application to cytology diagnosis. Diagn Cytopathol. 2012;40(6):542–55.PubMedCrossRefGoogle Scholar
  39. 39.
    Stewart CJ, et al. Fine needle aspiration cytology diagnosis of malignant lymphoma and reactive lymphoid hyperplasia. J Clin Pathol. 1998;51(3):197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Das DK. Serous effusions in malignant lymphomas: a review. Diagn Cytopathol. 2006;34(5):335–47.PubMedCrossRefGoogle Scholar
  41. 41.
    Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A. 1969;63(2):378–83.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Al Omran S, Mourad WA, Ali MA. Gamma/delta peripheral T-cell lymphoma of the breast diagnosed by fine-needle aspiration biopsy. Diagn Cytopathol. 2002;26(3):170–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Yasuda I, et al. Endoscopic ultrasound-guided fine needle aspiration biopsy for diagnosis of lymphoproliferative disorders: feasibility of immunohistological, flow cytometric, and cytogenetic assessments. Am J Gastroenterol. 2012;107(3):397–404.PubMedCrossRefGoogle Scholar
  44. 44.
    Perak RB, et al. Soft tissue B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt’s lymphoma diagnosed by fine needle aspiration cytology. Acta Cytol. 2015;59:355–7.CrossRefGoogle Scholar
  45. 45.
    Jiang F, Katz RL. Use of interphase fluorescence in situ hybridization as a powerful diagnostic tool in cytology. Diagn Mol Pathol. 2002;11(1):47–57.PubMedCrossRefGoogle Scholar
  46. 46.
    Bentz JS, et al. Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer. 2004;102(2):124–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Caraway NP, et al. The utility of interphase fluorescence in situ hybridization for the detection of the translocation t(11;14)(q13;q32) in the diagnosis of mantle cell lymphoma on fine-needle aspiration specimens. Cancer. 2005;105(2):110–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Cook JR. Paraffin section interphase fluorescence in situ hybridization in the diagnosis and classification of non-Hodgkin lymphomas. Diagn Mol Pathol. 2004;13(4):197–206.PubMedCrossRefGoogle Scholar
  49. 49.
    Bishop R. Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical signficiance. Biosci Horiz. 2010;3(1):85–95.CrossRefGoogle Scholar
  50. 50.
    Buno I, et al. Lymphoma associated chromosomal abnormalities can easily be detected by FISH on tissue imprints. An underused diagnostic alternative. J Clin Pathol. 2005;58(6):629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rowe LR, et al. Tumor cell nuclei extraction from paraffin-embedded lymphoid tissue for fluorescence in situ hybridization. Appl Immunohistochem Mol Morphol. 2006;14(2):220–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Wolff DJ, et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diagn. 2007;9(2):134–43.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Trcic RL, et al. Recurrent chromosomal abnormalities in lymphomas in fine needle aspirates of lymph node. Coll Antropol. 2010;34(2):387–93.PubMedGoogle Scholar
  54. 54.
    Monaco SE, et al. Fluorescence in situ hybridization studies on direct smears: an approach to enhance the fine-needle aspiration biopsy diagnosis of B-cell non-Hodgkin lymphomas. Cancer. 2009;117(5):338–48.PubMedGoogle Scholar
  55. 55.
    Zeppa P, et al. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples. Cancer Cytopathol. 2012;120(6):390–400.PubMedCrossRefGoogle Scholar
  56. 56.
    Kishimoto K, et al. Cytologic differential diagnosis of follicular lymphoma grades 1 and 2 from reactive follicular hyperplasia: cytologic features of fine-needle aspiration smears with Pap stain and fluorescence in situ hybridization analysis to detect t(14;18)(q32;q21) chromosomal translocation. Diagn Cytopathol. 2006;34(1):11–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Jiang F, et al. Rapid detection of IgH/BCL2 rearrangement in follicular lymphoma by interphase fluorescence in situ hybridization with bacterial artificial chromosome probes. J Mol Diagn. 2002;4(3):144–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Albinger-Hegyi A, et al. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol. 2002;160(3):823–32.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Stoos-Veic T, et al. Detection of t(14;18) by PCR of IgH/BCL2 fusion gene in follicular lymphoma from archived cytological smears. Coll Antropol. 2010;34(2):425–9.PubMedGoogle Scholar
  60. 60.
    Richmond J, et al. FISH detection of t(14;18) in follicular lymphoma on Papanicolaou-stained archival cytology slides. Cancer. 2006;108(3):198–204.PubMedCrossRefGoogle Scholar
  61. 61.
    Mehrotra S, Pan Z. Fine needle aspiration cytology of histiocytic sarcoma with dendritic cell differentiation: a case of transdifferentiation from low-grade follicular lymphoma. Diagn Cytopathol. 2015;43(8):659–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Gong Y, et al. Evaluation of interphase fluorescence in situ hybridization for the t(14;18)(q32;q21) translocation in the diagnosis of follicular lymphoma on fine-needle aspirates: a comparison with flow cytometry immunophenotyping. Cancer. 2003;99(6):385–93.PubMedCrossRefGoogle Scholar
  63. 63.
    Kido T, et al. Detection of MALT1 gene rearrangements in BAL fluid cells for the diagnosis of pulmonary mucosa-associated lymphoid tissue lymphoma. Chest. 2012;141(1):176–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Ko HM, et al. Cytomorphological and clinicopathological spectrum of pulmonary marginal zone lymphoma: the utility of immunophenotyping, PCR and FISH studies. Cytopathology. 2014;25(4):250–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Caraway NP, et al. Numeric chromosomal abnormalities in small lymphocytic and transformed large cell lymphomas detected by fluorescence in situ hybridization of fine-needle aspiration biopsies. Cancer. 2000;90(2):126–32.PubMedCrossRefGoogle Scholar
  66. 66.
    Caraway NP, et al. Chromosomal abnormalities detected by multicolor fluorescence in situ hybridization in fine-needle aspirates from patients with small lymphocytic lymphoma are useful for predicting survival. Cancer. 2008;114(5):315–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Andrysiak-Mamos E, et al. Case report: rare case of infiltration of small lymphocytic B-cell lymphoma in the thyroid gland of female patient with B-cell chronic lymphocytic leukemia (CLL-B/SLL-B). Thyroid Res. 2013;6(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Woroniecka R, et al. Cytogenetic and flow cytometry evaluation of Richter syndrome reveals MYC, CDKN2A, IGH alterations with loss of CD52, CD62L and increase of CD71 antigen expression as the most frequent recurrent abnormalities. Am J Clin Pathol. 2015;143(1):25–35.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang L, et al. Richter transformation with c-MYC overexpression: report of three cases. Int J Clin Exp Pathol. 2015;8(6):7540–6.PubMedPubMedCentralGoogle Scholar
  70. 70.
    da Cunha Santos G, et al. Targeted use of fluorescence in situ hybridization (FISH) in cytospin preparations: results of 298 fine needle aspirates of B-cell non-Hodgkin lymphoma. Cancer Cytopathol. 2010;118(5):250–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Elkins CT, Wakely PE Jr. Cytopathology of “double-hit” non-Hodgkin lymphoma. Cancer Cytopathol. 2011;119(4):263–71.PubMedCrossRefGoogle Scholar
  72. 72.
    Kaplan A, et al. Follicular lymphoma transformed to “double-hit” B lymphoblastic lymphoma presenting in the peritoneal fluid. Diagn Cytopathol. 2013;41(11):986–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang W, et al. Triple-hit B-cell Lymphoma With MYC, BCL2, and BCL6 Translocations/Rearrangements: Clinicopathologic Features of 11 Cases. Am J Surg Pathol. 2015;39(8):1132–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Troxell ML, et al. Cytologic diagnosis of Burkitt lymphoma. Cancer. 2005;105(5):310–8.PubMedCrossRefGoogle Scholar
  75. 75.
    McLean TW, et al. Diagnosis of Burkitt lymphoma in pediatric patients by thoracentesis. Pediatr Blood Cancer. 2007;49(1):90–2.PubMedCrossRefGoogle Scholar
  76. 76.
    Shin HJ, et al. Detection of a subset of CD30+ anaplastic large cell lymphoma by interphase fluorescence in situ hybridization. Diagn Cytopathol. 2003;29(2):61–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Cleary JM, et al. Crizotinib as salvage and maintenance with allogeneic stem cell transplantation for refractory anaplastic large cell lymphoma. J Natl Compr Cancer Netw. 2014;12(3):323–6. quiz 326CrossRefGoogle Scholar
  78. 78.
    Michelow P, Wright C, Pantanowitz L. A review of the cytomorphology of Epstein-Barr virus-associated malignancies. Acta Cytol. 2012;56(1):1–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Ohori NP, et al. Primary pleural effusion posttransplant lymphoproliferative disorder: distinction from secondary involvement and effusion lymphoma. Diagn Cytopathol. 2001;25(1):50–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Hecht JL, Cibas ES, Kutok JL. Fine-needle aspiration cytology of lymphoproliferative disorders in the immunosuppressed patient: the diagnostic utility of in situ hybridization for Epstein-Barr virus. Diagn Cytopathol. 2002;26(6):360–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Su XY, et al. Serous effusion cytology of extranodal natural killer/T-cell lymphoma. Cytopathology. 2012;23(2):96–102.PubMedCrossRefGoogle Scholar
  82. 82.
    Garady C, et al. Epstein-Barr virus encoded RNA detected by in situ hybridization using cytological preparations. Cytopathology. 2014;25(2):101–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Reichard KK, et al. Automated analysis of fluorescence in situ hybridization on fixed, paraffin-embedded whole tissue sections in B-cell lymphoma. Mod Pathol. 2006;19(8):1027–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Liew M, et al. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system. J Pathol Inform. 2016;7:20.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mayall F, Johnson S. Immunoflow cytometry compared with PCR for the identification of clonality in FNAs of T-cell-rich B-cell lymphomas. Cytopathology. 2007;18(2):117–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Price CG, et al. Polymerase chain reaction to confirm extranodal progression of follicular lymphoma. Lancet. 1989;1(8647):1132.PubMedCrossRefGoogle Scholar
  87. 87.
    Wan JH, et al. Rapid method for detecting monoclonality in B cell lymphoma in lymph node aspirates using the polymerase chain reaction. J Clin Pathol. 1992;45(5):420–3.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen YT, Mercer GO, Chen Y. Polymerase chain reaction-based detection of B-cell monoclonality in cytologic specimens. Arch Pathol Lab Med. 1993;117(11):1099–103.PubMedGoogle Scholar
  89. 89.
    Kube MJ, et al. Use of archival and fresh cytologic material for the polymerase chain reaction. Detection of the bcl-2 oncogene in lymphoid tissue obtained by fine needle biopsy. Anal Quant Cytol Histol. 1994;16(3):174–82.PubMedGoogle Scholar
  90. 90.
    Greenberg ML, Cartwright L, McDonald DA. Histiocytic necrotizing lymphadenitis (Kikuchi’s disease): cytologic diagnosis by fine-needle biopsy. Diagn Cytopathol. 1993;9(4):444–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Shivnarain D, Ladanyi M, Zakowski MF. Detection of BCL2 rearrangement in archival cytological smears of B-cell lymphomas. Mod Pathol. 1994;7(9):915–9.PubMedGoogle Scholar
  92. 92.
    Alkan S, et al. Polymerase chain reaction detection of immunoglobulin gene rearrangement and bcl-2 translocation in archival glass slides of cytologic material. Diagn Mol Pathol. 1995;4(1):25–31.PubMedCrossRefGoogle Scholar
  93. 93.
    Grosso LE, Collins BT. DNA polymerase chain reaction using fine needle aspiration biopsy smears to evaluate non-Hodgkin’s lymphoma. Acta Cytol. 1999;43(5):837–41.PubMedCrossRefGoogle Scholar
  94. 94.
    Kikuchi M, et al. Diagnosis of B-cell lymphoma. Utility of the polymerase chain reaction for detecting clonality from archival cytologic smears. Acta Cytol. 2002;46(2):349–56.PubMedCrossRefGoogle Scholar
  95. 95.
    Ruschenburg I, et al. Automated molecular genetic DNA analysis for detecting B-cell non-Hodgkin’s lymphoma in cytologic specimens. Anal Quant Cytol Histol. 1997;19(3):255–63.PubMedGoogle Scholar
  96. 96.
    Torlakovic E, Berner A, Risberg B. Detection of immunoglobulin heavy chain gene rearrangements by polymerase chain reaction analysis on lymph node imprints and fine-needle aspirate smears: a comparison of five different imprint preparations. Diagn Cytopathol. 1999;20(6):333–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Chen JT, Lane MA, Clark DP. Inhibitors of the polymerase chain reaction in papanicolaou stain. Removal with a simple destaining procedure. Acta Cytol. 1996;40(5):873–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Jeffers MD, et al. Analysis of clonality in cytologic material using the polymerase chain reaction (PCR). Cytopathology. 1997;8(2):114–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Vianello F, et al. Detection of B-cell monoclonality in fine needle aspiration by PCR analysis. Leuk Lymphoma. 1998;29(1-2):179–85.PubMedCrossRefGoogle Scholar
  100. 100.
    Ribera J, et al. Usefulness of IGH/TCR PCR studies in lymphoproliferative disorders with inconclusive clonality by flow cytometry. Cytometry B Clin Cytom. 2014;86(1):25–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Brozic A, et al. Inconclusive flow cytometric surface light chain results; can cytoplasmic light chains, Bcl-2 expression and PCR clonality analysis improve accuracy of cytological diagnoses in B-cell lymphomas? Diagn Pathol. 2015;10:191.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Roepman P, et al. Molecular clonality assessment shows high performance to predict malignant B-cell non-Hodgkin’s lymphoma using cytological smears. J Clin Pathol. 2016;69(12):1109–15.PubMedCrossRefGoogle Scholar
  103. 103.
    Venkatraman L, et al. Role of polymerase chain reaction and immunocytochemistry in the cytological assessment of lymphoid proliferations. J Clin Pathol. 2006;59(11):1160–5.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Aiello A, et al. PCR analysis of IgH and BCL2 gene rearrangement in the diagnosis of follicular lymphoma in lymph node fine-needle aspiration. A critical appraisal. Diagn Mol Pathol. 1997;6(3):154–60.PubMedCrossRefGoogle Scholar
  105. 105.
    Elenitoba-Johnson KS, et al. PCR analysis of the immunoglobulin heavy chain gene in polyclonal processes can yield pseudoclonal bands as an artifact of low B cell number. J Mol Diagn. 2000;2(2):92–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Davidson B, et al. Evaluation of lymphoid cell populations in cytology specimens using flow cytometry and polymerase chain reaction. Diagn Mol Pathol. 1999;8(4):183–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Maroto A, et al. A single primer pair immunoglobulin polymerase chain reaction assay as a useful tool in fine-needle aspiration biopsy differential diagnosis of lymphoid malignancies. Cancer. 2003;99(3):180–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Maroto A, et al. Comparative analysis of immunoglobulin polymerase chain reaction and flow cytometry in fine needle aspiration biopsy differential diagnosis of non-Hodgkin B-cell lymphoid malignancies. Diagn Cytopathol. 2009;37(9):647–53.PubMedCrossRefGoogle Scholar
  109. 109.
    van Dongen JJ, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.PubMedCrossRefGoogle Scholar
  110. 110.
    Langerak AW, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chen YP, et al. Malignant effusions correlate with poorer prognosis in patients with diffuse large B-cell lymphoma. Am J Clin Pathol. 2015;143(5):707–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Lobo C, et al. Serous fluid cytology of multicentric Castleman’s disease and other lymphoproliferative disorders associated with Kaposi sarcoma-associated herpes virus: a review with case reports. Cytopathology. 2012;23(2):76–85.PubMedCrossRefGoogle Scholar
  113. 113.
    Mihaescu A, et al. Application of molecular genetics to the diagnosis of lymphoid-rich effusions: study of 95 cases with concomitant immunophenotyping. Diagn Cytopathol. 2002;27(2):90–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Murphy M, et al. Detection of concurrent/recurrent non-Hodgkin’s lymphoma in effusions by PCR. Hum Pathol. 1999;30(11):1361–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Nepka C, et al. An unusual case of Primary Effusion Lymphoma with aberrant T-cell phenotype in a HIV-negative, HBV-positive, cirrhotic patient, and review of the literature. Cytojournal. 2012;9:16.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Philippe B, et al. B-cell pulmonary lymphoma: gene rearrangement analysis of bronchoalveolar lymphocytes by polymerase chain reaction. Chest. 1999;115(5):1242–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Zompi S, et al. Clonality analysis of alveolar B lymphocytes contributes to the diagnostic strategy in clinical suspicion of pulmonary lymphoma. Blood. 2004;103(8):3208–15.PubMedCrossRefGoogle Scholar
  118. 118.
    Lovchik J, Lane MA, Clark DP. Polymerase chain reaction-based detection of B-cell clonality in the fine needle aspiration biopsy of a thyroid mucosa-associated lymphoid tissue (MALT) lymphoma. Hum Pathol. 1997;28(8):989–92.PubMedCrossRefGoogle Scholar
  119. 119.
    Adhikari LJ, Reynolds JP, Wakely PE Jr. Multi-institutional study of fine needle aspiration for thyroid lymphoma. J Am Soc Cytopathol. 2015;5(3):170–6.CrossRefGoogle Scholar
  120. 120.
    Chen HI, et al. Restricted kappa/lambda light chain ratio by flow cytometry in germinal center B cells in Hashimoto thyroiditis. Am J Clin Pathol. 2006;125(1):42–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Zeppa P, et al. Cytologic, flow cytometry, and molecular assessment of lymphoid infiltrate in fine-needle cytology samples of Hashimoto thyroiditis. Cancer. 2009;117(3):174–84.PubMedGoogle Scholar
  122. 122.
    Galindo LM, et al. Fine-needle aspiration biopsy in the evaluation of lymphadenopathy associated with cutaneous T-cell lymphoma (mycosis fungoides/Sezary syndrome). Am J Clin Pathol. 2000;113(6):865–71.PubMedCrossRefGoogle Scholar
  123. 123.
    Pai RK, et al. Cytologic evaluation of lymphadenopathy associated with mycosis fungoides and Sezary syndrome: role of immunophenotypic and molecular ancillary studies. Cancer. 2008;114(5):323–32.PubMedCrossRefGoogle Scholar
  124. 124.
    Vigliar E, et al. Lymph node fine needle cytology in the staging and follow-up of cutaneous lymphomas. BMC Cancer. 2014;14:8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Cozzolino I, et al. Fine needle aspiration cytology of lymphoproliferative lesions of the oral cavity. Cytopathology. 2014;25(4):241–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Rhodes CH, et al. A comparison of polymerase chain reaction examination of cerebrospinal fluid and conventional cytology in the diagnosis of lymphomatous meningitis. Cancer. 1996;77(3):543–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Ekstein D, et al. CSF analysis of IgH gene rearrangement in CNS lymphoma: relationship to the disease course. J Neurol Sci. 2006;247(1):39–46.PubMedCrossRefGoogle Scholar
  128. 128.
    Shibata D, et al. Detection of occult CNS involvement of follicular small cleaved lymphoma by the polymerase chain reaction. Mod Pathol. 1990;3(1):71–5.PubMedGoogle Scholar
  129. 129.
    Wildemann B, et al. Rapid distinction of acute demyelinating disorders and central nervous system lymphoma by molecular analysis of cerebrospinal fluid cells. J Neurol. 2001;248(2):127–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Lobo A, et al. Protocol for the use of polymerase chain reaction in the detection of intraocular large B-cell lymphoma in ocular samples. J Mol Diagn. 2007;9(1):113–21.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Gleissner B, et al. CSF evaluation in primary CNS lymphoma patients by PCR of the CDR III IgH genes. Neurology. 2002;58(3):390–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Sayed D, et al. Immunophenotyping and immunoglobulin heavy chain gene rearrangement analysis in cerebrospinal fluid of pediatric patients with acute lymphoblastic leukemia. Leuk Res. 2009;33(5):655–61.PubMedCrossRefGoogle Scholar
  133. 133.
    Scrideli CA, et al. Molecular diagnosis of leukemic cerebrospinal fluid cells in children with newly diagnosed acute lymphoblastic leukemia. Haematologica. 2004;89(8):1013–5.PubMedGoogle Scholar
  134. 134.
    Hug A, et al. Single-cell PCR analysis of the immunoglobulin heavy-chain CDR3 region for the diagnosis of leptomeningeal involvement of B-cell malignancies using standard cerebrospinal fluid cytospins. J Neurol Sci. 2004;219(1-2):83–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Liu L, et al. Detection of malignant B lymphocytes by PCR clonality assay using direct lysis of cerebrospinal fluid and low volume specimens. Int J Lab Hematol. 2015;37(2):165–73.PubMedCrossRefGoogle Scholar
  136. 136.
    Ranty ML, et al. Improving the cytological diagnosis of intraocular lymphoma from vitreous fluid. Histopathology. 2015;67(1):48–61.PubMedCrossRefGoogle Scholar
  137. 137.
    Slack GW, Gascoyne RD. Next-generation sequencing discoveries in lymphoma. Adv Anat Pathol. 2013;20(2):110–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.PubMedCrossRefGoogle Scholar
  139. 139.
    Scott DW, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123(8):1214–7.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Kendrick S, et al. Diffuse large B-cell lymphoma cell-of-origin classification using the Lymph2Cx assay in the context of BCL2 and MYC expression status. Leuk Lymphoma. 2016;57(3):717–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Swerdlow SH, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Goy A, et al. The feasibility of gene expression profiling generated in fine-needle aspiration specimens from patients with follicular lymphoma and diffuse large B-cell lymphoma. Cancer. 2006;108(1):10–20.PubMedCrossRefGoogle Scholar
  143. 143.
    da Santos GC, et al. Multiplex sequencing for EZH2, CD79B, and MYD88 mutations using archival cytospin preparations from B-cell non-Hodgkin lymphoma aspirates previously tested for MYC rearrangement and IGH/BCL2 translocation. Cancer Cytopathol. 2015;123(7):413–20.CrossRefGoogle Scholar
  144. 144.
    Saieg MA, et al. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples. Cancer Cytopathol. 2013;121(7):377–86.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Morin RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Tiacci E, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Tiacci E, et al. Simple genetic diagnosis of hairy cell leukemia by sensitive detection of the BRAF-V600E mutation. Blood. 2012;119(1):192–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Badalian-Very G, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Mason EF, et al. Detection of activating MAP2K1 mutations in atypical hairy cell leukemia and hairy cell leukemia variant. Leuk Lymphoma. 2016;58(1):233–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Waterfall JJ, et al. High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10.PubMedCrossRefGoogle Scholar
  151. 151.
    Brown NA, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Diamond EL, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6(2):154–65.PubMedCrossRefGoogle Scholar
  153. 153.
    Fernandez V, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70(4):1408–18.PubMedCrossRefGoogle Scholar
  154. 154.
    Hunter ZR, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.PubMedCrossRefGoogle Scholar
  155. 155.
    Ngo VN, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Kiel MJ, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209(9):1553–65.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Clipson A, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia. 2015;29(5):1177–85.PubMedCrossRefGoogle Scholar
  158. 158.
    Cornet E, et al. Developing molecular signatures for chronic lymphocytic leukemia. PLoS One. 2015;10(6):e0128990.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Scott DW, et al. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. Blood. 2012;119(21):4949–52.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Vasmatzis G, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kucuk C, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.PubMedCrossRefGoogle Scholar
  162. 162.
    Schwock J, et al. Enteropathy-associated intestinal T-cell lymphoma in cavitating mesenteric lymph node syndrome: fine-needle aspiration contributes to the diagnosis. Diagn Cytopathol. 2015;43(2):125–30.PubMedCrossRefGoogle Scholar
  163. 163.
    Feldman AL, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Yoo HY, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Sakata-Yanagimoto M, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–5.PubMedCrossRefGoogle Scholar
  166. 166.
    Palomero T, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Zeppa P, et al. Fine-needle cytology and flow cytometry immunophenotyping and subclassification of non-Hodgkin lymphoma: a critical review of 307 cases with technical suggestions. Cancer. 2004;102(1):55–65.PubMedCrossRefGoogle Scholar
  168. 168.
    Amador-Ortiz C, et al. Combined core needle biopsy and fine-needle aspiration with ancillary studies correlate highly with traditional techniques in the diagnosis of nodal-based lymphoma. Am J Clin Pathol. 2011;135(4):516–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joerg Schwock
    • 1
    Email author
  • Graeme R. Quest
    • 2
  • William R. Geddie
    • 3
  1. 1.University of Toronto, University Health Network, Toronto General HospitalTorontoCanada
  2. 2.Queen’s University, Kingston Health Science CentreKingstonCanada
  3. 3.TorontoCanada

Personalised recommendations