Viral Manipulation of the Host Metabolic Network

  • Inês Mesquita
  • Jérôme Estaquier
Part of the Experientia Supplementum book series (EXS, volume 109)


Viruses are intracellular parasites that rely on host machinery to replicate and achieve a successful infection. Viruses have evolved to retain a broad range of strategies to manipulate host cell metabolism and metabolic resources, channeling them toward the production of virion components leading to viral production. Although several viruses share similar strategies for manipulating host cell metabolism, these processes depend on several factors, namely, the viral life cycle and the metabolic and energetic status of the infected cell. Based on this knowledge, the development of new therapeutic approaches that circumvent viral spread through the target of altered metabolic pathways is an opportunity to tackle the infection. However, finding effective broad-spectrum strategies that aim at restoring to homeostasis the metabolic alterations induced upon virus infection is still a Holy Grail quest for antiviral therapies. Here, we review the strategies by which viruses manipulate host metabolism for their own benefit, with a particular emphasis on carbohydrate, glutamine, and lipid metabolism.


Host cell metabolism Host–pathogen interaction Viral infection Metabolic manipulation 


  1. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA 96:12766–12771CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amako Y, Munakata T, Kohara M, Siddiqui A, Peers C, Harris M (2015) Hepatitis C virus attenuates mitochondrial lipid beta-oxidation by downregulating mitochondrial trifunctional-protein expression. J Virol 89:4092–4101CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnoult D, Petit F, Lelièvre JD, Estaquier J (2003) Mitochondria in HIV-1-induced apoptosis. Biochem Biophys Res Commun 304:561–574CrossRefPubMedGoogle Scholar
  4. Arnoult D, Viollet L, Petit F, Lelièvre JD, Estaquier J (2004) HIV-1 triggers mitochondrion death. Mitochondrion 4:255–269CrossRefPubMedGoogle Scholar
  5. Bajimaya S, Frankl T, Hayashi T, Takimoto T (2017a) Cholesterol is required for stability and infectivity of influenza a and respiratory syncytial viruses. Virology 510:234–241CrossRefPubMedGoogle Scholar
  6. Bajimaya S, Hayashi T, Frankl T, Bryk P, Ward B, Takimoto T (2017b) Cholesterol reducing agents inhibit assembly of type I parainfluenza viruses. Virology 501:127–135CrossRefPubMedGoogle Scholar
  7. Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K, Merali S (2013) HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One 8:e68376CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bavari S, Bosio CM, Wiegand E, Ruthel G, Will AB, Geisbert TW, Hevey M, Schmaljohn C, Schmaljohn A, Aman MJ (2002) Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195:593–602CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blonz ER (2016) Zika virus and GLUT1. Lancet Infect Dis 16:642CrossRefPubMedGoogle Scholar
  10. Buck MD, O’Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212:1345–1360CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254:423–427CrossRefPubMedGoogle Scholar
  12. Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A et al (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81:12846–12858CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G et al (2011) Ebola virus entry requires the cholesterol transporter Niemann–pick C1. Nature 477:340–343CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chambers JW, Maguire TG, Alwine JC (2010) Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 84:1867–1873CrossRefPubMedGoogle Scholar
  15. Cheung W, Gill M, Esposito A, Kaminski CF, Courousse N, Chwetzoff S, Trugnan G, Keshavan N, Lever A, Desselberger U (2010) Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J Virol 84:6782–6798CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chun T-W, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188CrossRefPubMedGoogle Scholar
  17. Crawford SE, Desselberger U (2016) Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Curr Opin Virol 19:11–15CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, Fitch A, Greenblatt RM, Kingsley L, Guidot DM et al (2016) Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome 4:3CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cui HL, Grant A, Mukhamedova N, Pushkarsky T, Jennelle L, Dubrovsky L, Gaus K, Fitzgerald ML, Sviridov D, Bukrinsky M (2012) HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J Lipid Res 53:696–708CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cumont MC, Monceaux V, Viollet L, Lay S, Parker R, Hurtrel B, Estaquier J (2007) TGF-beta in intestinal lymphoid organs contributes to the death of armed effector CD8 T cells and is associated with the absence of virus containment in rhesus macaques infected with the simian immunodeficiency virus. Cell Death Differ 14:1747–1758CrossRefPubMedGoogle Scholar
  21. Dang CV (2017) c-MYC mRNA tail tale about glutamine control of transcription. EMBO J 36:1806–1808CrossRefPubMedGoogle Scholar
  22. Darnell JE Jr, Eagle H (1958) Glucose and glutamine in poliovirus production by HeLa cells. Virology 6:556–566CrossRefPubMedGoogle Scholar
  23. Datta PK, Deshmane S, Khalili K, Merali S, Gordon JC, Fecchio C, Barrero CA (2016) Glutamate metabolism in HIV-1 infected macrophages: role of HIV-1 Vpr. Cell Cycle 15:2288–2298CrossRefPubMedPubMedCentralGoogle Scholar
  24. del Real G, Jiménez-Baranda S, Mira E, Lacalle RA, Lucas P, Gómez-Moutón C, Alegret M, Peña JM, Rodríguez-Zapata M, Alvarez-Mon M et al (2004) Statins inhibit HIV-1 infection by down-regulating rho activity. J Exp Med 200:541–547CrossRefPubMedPubMedCentralGoogle Scholar
  25. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M (2010) Induction of the Warburg effect by Kaposi’s sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci USA 107:10696–10701CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eagle H, Habel K (1956) The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell. J Exp Med 104:271–287CrossRefPubMedPubMedCentralGoogle Scholar
  27. Faustino AF, Carvalho FA, Martins IC, Castanho MARB, Mohana-Borges R, Almeida FCL, Da Poian AT, Santos NC (2014) Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomed: Nanotechnol, Biol Med 10:247–255CrossRefGoogle Scholar
  28. Filipe A, McLauchlan J (2015) Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med 21:34–42CrossRefPubMedGoogle Scholar
  29. Fontaine KA, Camarda R, Lagunoff M (2014) Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 88:4366–4374CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fontaine KA, Sanchez EL, Camarda R, Lagunoff M (2015) Dengue virus induces and requires glycolysis for optimal replication. J Virol 89:2358–2366CrossRefPubMedGoogle Scholar
  31. Fu X, Hu X, Li N, Zheng F, Dong X, Duan J, Lin Q, Tu J, Zhao L, Huang Z et al (2017) Glutamine and glutaminolysis are required for efficient replication of infectious spleen and kidney necrosis virus in Chinese perch brain cells. Oncotarget 8:2400–2412PubMedGoogle Scholar
  32. Gaunt ER, Zhang Q, Cheung W, Wakelam MJ, Lever AM, Desselberger U (2013) Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms. J Gen Virol 94:1576–1586CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ghannoum MA, Mukherjee PK, Jurevic RJ, Retuerto M, Brown RE, Sikaroodi M, Webster-Cyriaque J, Gillevet PM (2013) Metabolomics reveals differential levels of oral metabolites in HIV-infected patients: toward novel diagnostic targets. OMICS 17:5–15CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gonnella R, Santarelli R, Farina A, Granato M, D’Orazi G, Faggioni A, Cirone M (2013) Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line. J Exp Clin Cancer Res 32:79CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gosselin A, Wiche Salinas TR, Planas D, Wacleche VS, Zhang Y, Fromentin R, Chomont N, Cohen ÉA, Shacklett B, Mehraj V et al (2017) HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. AIDS 31:35–48CrossRefPubMedGoogle Scholar
  36. Greenway F (2006) Virus-induced obesity. Am J Physiol Regul Integr Comp Physiol 290:R188–R189CrossRefPubMedGoogle Scholar
  37. Greseth MD, Traktman P (2014) De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. PLoS Pathog 10:e1004021CrossRefPubMedPubMedCentralGoogle Scholar
  38. Heaton NS, Randall G (2011) Multifaceted roles for lipids in viral infection. Trends Microbiol 19:368–375CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hollenbaugh JA, Munger J, Kim B (2011) Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 415:153–159CrossRefPubMedPubMedCentralGoogle Scholar
  40. Huang H, Li Y, Sadaoka T, Tang H, Yamamoto T, Yamanishi K, Mori Y (2006) Human herpesvirus 6 envelope cholesterol is required for virus entry. J Gen Virol 87:277–285CrossRefPubMedGoogle Scholar
  41. Izquierdo-Useros N, Lorizate M, Contreras FX, Rodriguez-Plata MT, Glass B, Erkizia I, Prado JG, Casas J, Fabrias G, Krausslich HG et al (2012) Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 10:e1001315CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180:4476–4486CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jordan TX, Randall G (2017) Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J Virol 91:e02020–e02016CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kim KH, Shin HJ, Kim K, Choi HM, Rhee SH, Moon HB, Kim HH, Yang US, Yu DY, Cheong J (2007) Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma. Gastroenterology 132:1955–1967CrossRefPubMedGoogle Scholar
  45. Kim K, Kim KH, Kim HH, Cheong J (2008) Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J 416:219–230CrossRefPubMedGoogle Scholar
  46. Konan KV, Sanchez-Felipe L (2014) Lipids and RNA virus replication. Curr Opin Virol 9:45–52CrossRefPubMedPubMedCentralGoogle Scholar
  47. Koyuncu E, Purdy JG, Rabinowitz JD, Shenk T (2013) Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. PLoS Pathog 9:e1003333CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, Loiselle D, Torrelles JB, Funderburg NT, Haystead TA et al (2017) Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 14:45CrossRefPubMedPubMedCentralGoogle Scholar
  49. Laforge M, Campillo-Gimenez L, Monceaux V, Cumont MC, Hurtrel B, Corbeil J, Zaunders J, Elbim C, Estaquier J (2011) HIV/SIV infection primes monocytes and dendritic cells for apoptosis. PLoS Pathog 7:e1002087CrossRefPubMedPubMedCentralGoogle Scholar
  50. Le A, Dang CV (2013) Studying Myc’s role in metabolism regulation. Methods Mol Biol 1012:213–219CrossRefPubMedPubMedCentralGoogle Scholar
  51. Levy HB, Baron S (1957) The effect of animal viruses on host cell metabolism ii. Effect of poliomyelitis virus on glycolysis and uptake of glycine by monkey kidney tissue cultures. J Infect Dis 100:109–118CrossRefPubMedGoogle Scholar
  52. Levy PL, Duponchel S, Eischeid H, Molle J, Michelet M, Diserens G, Vermathen M, Vermathen P, Dufour J-F, Dienes H-P et al (2017) Hepatitis C virus infection triggers a tumor-like glutamine metabolism. Hepatology 65:789–803CrossRefPubMedGoogle Scholar
  53. Li C, Deng YQ, Wang S, Ma F, Aliyari R, Huang XY, Zhang NN, Watanabe M, Dong HL, Liu P et al (2017) 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity 46:446–456CrossRefPubMedGoogle Scholar
  54. Liao Z, Cimakasky LM, Hampton R, Nguyen DH, Hildreth JE (2001) Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retrovir 17:1009–1019CrossRefPubMedGoogle Scholar
  55. Loisel-Meyer S, Swainson L, Craveiro M, Oburoglu L, Mongellaz C, Costa C, Martinez M, Cosset F-L, Battini J-L, Herzenberg LA et al (2012) Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci 109:2549–2554CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lorizate M, Krausslich HG (2011) Role of lipids in virus replication. Cold Spring Harb Perspect Biol 3:a004820CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mazzon M, Mercer J (2014) Lipid interactions during virus entry and infection. Cell Microbiol 16:1493–1502CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097CrossRefPubMedGoogle Scholar
  59. Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, Roitelman J, Barbaras R, Graber P, Ghersa P et al (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46:411–419CrossRefPubMedGoogle Scholar
  60. Moser TS, Schieffer D, Cherry S (2012) AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 8:e1002661CrossRefPubMedPubMedCentralGoogle Scholar
  61. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2:e132CrossRefPubMedPubMedCentralGoogle Scholar
  62. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179–1186CrossRefPubMedPubMedCentralGoogle Scholar
  63. Na TY, Shin YK, Roh KJ, Kang SA, Hong I, Oh SJ, Seong JK, Park CK, Choi YL, Lee MO (2009) Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 49:1122–1131CrossRefPubMedGoogle Scholar
  64. Negro F, Sanyal AJ (2009) Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int 29(Suppl 2):26–37CrossRefPubMedGoogle Scholar
  65. Ohol YM, Wang Z, Kemble G, Duke G (2015) Direct inhibition of cellular fatty acid synthase impairs replication of respiratory syncytial virus and other respiratory viruses. PLoS One 10:e0144648CrossRefPubMedPubMedCentralGoogle Scholar
  66. Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, Henstridge DC, Maisa A, Hearps AC, Lewin SR et al (2014) Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS 28:297–309CrossRefPubMedPubMedCentralGoogle Scholar
  67. Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-Tolic L, Metz TO, Adamec J, Kuhn RJ (2012) Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog 8:e1002584CrossRefPubMedPubMedCentralGoogle Scholar
  68. Physicochemical D, Essex M (1974) Glycolysis during early infection of feline and human cells with feline leukemia virus. Infect Immun 9:824–827Google Scholar
  69. Popik W, Alce TM, Au W-C (2002) Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J Virol 76:4709–4722CrossRefPubMedPubMedCentralGoogle Scholar
  70. Qian M, Tsai B (2010) Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 84:9840–9852CrossRefPubMedPubMedCentralGoogle Scholar
  71. Richard AS, Zhang A, Park S-J, Farzan M, Zong M, Choe H (2015) Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proc Natl Acad Sci 112:14682–14687CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sanchez EL, Pulliam TH, Dimaio TA, Thalhofer AB, Delgado T, Lagunoff M (2017) Glycolysis, glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi’s sarcoma-associated herpesvirus lytic replication. J Virol 91(10): e02237–16Google Scholar
  73. Santangelo PJ, Rogers KA, Zurla C, Blanchard EL, Gumber S, Strait K, Connor-Stroud F, Schuster DM, Amancha PK, Hong JJ et al (2015) Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy–treated macaques. Nat Methods 12:427–432CrossRefPubMedPubMedCentralGoogle Scholar
  74. Scarpelini B, Zanoni M, Sucupira MCA, Truong HHM, Janini LMR, Segurado IDC, Diaz RS (2016) Plasma metabolomics biosignature according to HIV stage of infection, pace of disease progression, viremia level and immunological response to treatment. PLoS One 11:e0161920CrossRefPubMedCentralGoogle Scholar
  75. Scharko AM, Perlman SB, Hinds P, Hanson JM, Uno H, Pauza CD (1996) Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques. Proc Natl Acad Sci USA 93:6425–6430CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T H 17 and T reg cells. J Exp Med 208:1367–1376CrossRefPubMedPubMedCentralGoogle Scholar
  77. Singh VN, Singh M, August JT, Horecker BL (1974) Alterations in glucose metabolism in chick-embryo cells transformed by Rous sarcoma virus: intracellular levels of glycolytic intermediates. Proc Natl Acad Sci USA 71:4129–4132CrossRefPubMedPubMedCentralGoogle Scholar
  78. Soto-Acosta R, Bautista-Carbajal P, Cervantes-Salazar M, Angel-Ambrocio AH, del Angel RM (2017) DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: a potential antiviral target. PLoS Pathog 13:e1006257CrossRefPubMedPubMedCentralGoogle Scholar
  79. Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA (1990) HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9:1551–1560PubMedPubMedCentralGoogle Scholar
  80. Stieh DJ, Matias E, Xu H, Fought AJ, Blanchard JL, Marx PA, Veazey RS, Hope TJ (2016) Th17 cells are preferentially infected very early after vaginal transmission of SIV in macaques. Cell Host Microbe 19:529–540CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sun H, Kim D, Li X, Kiselinova M, Ouyang Z, Vandekerckhove L, Shang H (2015) Th1/17 polarization of CD4 T cells supports HIV-1 persistence during antiretroviral therapy. J Virol 89:11284–11293CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sutter E, de Oliveira AP, Tobler K, Schraner EM, Sonda S, Kaech A, Lucas MS, Ackermann M, Wild P (2012) Herpes simplex virus 1 induces de novo phospholipid synthesis. Virology 429:124–135CrossRefPubMedGoogle Scholar
  83. Targett-Adams P, Boulant S, Douglas MW, McLauchlan J (2010) Lipid metabolism and HCV infection. Virus 2:1195–1217CrossRefGoogle Scholar
  84. Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK, McCormick F, Graeber TG, Christofk HR (2014) Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19:694–701CrossRefPubMedPubMedCentralGoogle Scholar
  85. Thai M, Thaker SK, Feng J, Du Y, Hu H, Ting Wu T, Graeber TG, Braas D, Christofk HR (2015) MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat Commun 6:8873CrossRefPubMedPubMedCentralGoogle Scholar
  86. Thomssen R, Bonk S, Propfe C, Heermann KH, Kochel HG, Uy A (1992) Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microbiol Immunol 181:293–300CrossRefPubMedGoogle Scholar
  87. Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22:4346–4355CrossRefPubMedPubMedCentralGoogle Scholar
  88. Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD (2011) Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7:e1002124CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Joseph S, Pagano JS (2004) Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 α. Mol Cell Biol 24:5223–5234CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang ZQ, Yu Y, Zhang XH, Floyd EZ, Cefalu WT (2010) Human adenovirus 36 decreases fatty acid oxidation and increases de novo lipogenesis in primary cultured human skeletal muscle cells by promoting Cidec/FSP27 expression. Int J Obes 34:1355–1364CrossRefGoogle Scholar
  91. Waris G, Felmlee DJ, Negro F, Siddiqui A (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81:8122–8130CrossRefPubMedPubMedCentralGoogle Scholar
  92. Whigham LD, Israel BA, Atkinson RL (2006) Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals. Am J Physiol Regul Integr Comp Physiol 290:R190–R194CrossRefPubMedGoogle Scholar
  93. Woodhouse SD, Narayan R, Latham S, Lee S, Antrobus R, Gangadharan B, Luo S, Schroth GP, Klenerman P, Zitzmann N (2010) Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. Hepatology 52:443–453CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, Conrads TP, Wang T (2008) Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 48:1396–1403CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yang ST, Kiessling V, Simmons JA, White JM, Tamm LK (2015) HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat Chem Biol 11:424–431CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ye F, Zeng Y, Sha J, Jones T, Kuhne K, Wood C, Gao S-J (2016) High glucose induces reactivation of latent Kaposi’s sarcoma-associated Herpesvirus. J Virol 90(21):9654–9663. (JVI.01049-16)CrossRefPubMedCentralGoogle Scholar
  97. Yogev O, Lagos D, Enver T, Boshoff C (2014) Kaposi’s sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog 10:e1004400CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yoon EJ, Hu KQ (2006) Hepatitis C virus (HCV) infection and hepatic steatosis. Int J Med Sci 3:53–56CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 6:e1001131CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Inês Mesquita
    • 1
    • 2
  • Jérôme Estaquier
    • 3
    • 4
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryBraga, GuimarãesPortugal
  3. 3.Centre de Recherche du CHU de QuébecUniversité LavalQuébecCanada
  4. 4.CNRS FR 3636, Université Paris DescartesParisFrance

Personalised recommendations