Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

I would like to start this elaborate by posing the most fundamental question: why do we study chirality? The answer is because Nature is chiral and, as part of it ourselves, it is imperative to understand it and its chiral mechanisms.

References

  1. 1.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. WileyGoogle Scholar
  2. 2.
    IUPAC (1997) Compendium of chemical terminology, 2nd edn. (the “Gold Book”). OxfordGoogle Scholar
  3. 3.
    Wolf C (2008) Dynamic stereochemistry of chiral compounds: principles and applications RSC, p 71Google Scholar
  4. 4.
    Enders D, Hüttl MRM, Grondal C, Raabe G (2006) Nature 861Google Scholar
  5. 5.
    Enders D, Hüttl MRM, Runsink J, Raabe G, Wendt B (2007) Angew Chem Int Ed 467Google Scholar
  6. 6.
    Enders D, Hüttl RM, Raabe G, Bats JW (2008) Adv Synth Catal 267Google Scholar
  7. 7.
    Cassani C, Tian X, Escudero-Adàn EC, Melchiorre P (2011) Chem Commun 233Google Scholar
  8. 8.
    Zhou B, Yang Y, Shi J, Luo Z, Li Y (2013) J Org Chem 2897Google Scholar
  9. 9.
    Chauhan P, Mahajan S, Raabe G, Enders D (2015) Chem Commun 2270Google Scholar
  10. 10.
    Reyes E, Jiang H, Milelli A, Helsner P, Hazell RG, Jorgensen KA (2007) Angew Chem Int Ed 9202Google Scholar
  11. 11.
    Ōki M (1984) Top Stereochem 1–81Google Scholar
  12. 12.
    Smyth JE, Butler NM, Keller PA (2015) Nat Prod Rep 1562Google Scholar
  13. 13.
    Bringmann G, Mortimer AJP, Keller PA, Gresser MJ, Garner J, Breuning M (2005) Angew Chem Int Ed 5384Google Scholar
  14. 14.
    Christie GH, Kenner J (1922) J Chem Soc Trans 614Google Scholar
  15. 15.
    Bringmann G, Gulder T, Gulder TAM, Breuning M (2011) Chem Rev 563Google Scholar
  16. 16.
    Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J (2015) Chem Rev 11239Google Scholar
  17. 17.
    Clayden JP, Lai LW (1999) Angew Chem Int Ed 2556Google Scholar
  18. 18.
    Adler T, Bonjoch J, Clayden J, Font-Bardfa M, Pickworth M, Solans X, Sole D, Vallverdu L (2005) Org Biomol Chem 3173Google Scholar
  19. 19.
    Curran DP, Qi H, Geib SJ, DeMello NC (1994) J Am Chem Soc 3131Google Scholar
  20. 20.
    Betson MS, Clayden J, Worrall CP, Peace S (2006) Angew Chem Int Ed 5803Google Scholar
  21. 21.
    Clayden J, Senior J, Helliwell M (2009) Angew Chem Int Ed 6270Google Scholar
  22. 22.
    Pinkus AG, Riggs JI, Broughton SM (1968) J Am Chem Soc 5043Google Scholar
  23. 23.
    Taylor DR (1967) Chem Rev 317Google Scholar
  24. 24.
    Klyne W, Prelog V (1960) Experientia 521Google Scholar
  25. 25.
    Shen Y, Chen C (2011) Chem Rev 1463Google Scholar
  26. 26.
    Gingras M (2013) Chem Soc RevGoogle Scholar
  27. 27.
    Gingras M, Félix G, Peresutti R (2013) Chem Soc Rev 1007Google Scholar
  28. 28.
    González-Fernández E, Nicholls LDM, Schaaf LD, Farès C, Lehmann CW, Alcazaro M (2017) J Am Chem Soc. ASAP article.  https://doi.org/10.1021/jacs.6b12443
  29. 29.
    van’t Hoff JH (1875) Bull Soc Chim France 295Google Scholar
  30. 30.
    Hutt AJ, O’grady J (1996) J Antimicrob Chemoter 7Google Scholar
  31. 31.
    Agranat I, Caner H, Caldwell J (2002) Nat Rev Drug Discov 753Google Scholar
  32. 32.
    Aliens EJ, Wuis EW, Veringa EJ (1988) Biochem Pharmacol 9Google Scholar
  33. 33.
    Burns NZ, Baran PS, Hoffmann RW (2009) Angew Chem Int Ed 2854Google Scholar
  34. 34.
    List B (2004) Adv Synth Catal 1021Google Scholar
  35. 35.
    Ahrendt KA, Borths CJ, MacMillan DWC (2000) J Am Chem Soc 4243Google Scholar
  36. 36.
    List B, Lerner RA, Barbas III CF (2000) J Am Chem Soc 2395Google Scholar
  37. 37.
    Gaunt MJ, Johansson CCC, McNally A, Vo NT (2007) Drug Discov Today 8Google Scholar
  38. 38.
    MacMillan DWC (2008) Nature 304Google Scholar
  39. 39.
    List B (2006) Chem Commun 819Google Scholar
  40. 40.
    Knoevenagel E (1896) Ber Dtsch Chem Ges 172Google Scholar
  41. 41.
    List B (2010) Angew Chem Int Ed 1730Google Scholar
  42. 42.
    Biju AT, Kuhl N, Glorius F (2011) Acc Chem Res 1182Google Scholar
  43. 43.
    Grossman A, Enders D (2012) Angew Chem Int Ed 314Google Scholar
  44. 44.
    Chen XY, Ye S (2013) Org Biomol Chem 7991Google Scholar
  45. 45.
    Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 485Google Scholar
  46. 46.
    Wang MH, Scheidt KA (2016) Angew Chem Int Ed 14912Google Scholar
  47. 47.
    Wei Y, Shi M (2013) Chem Rev 6659Google Scholar
  48. 48.
    Rios R (2012) Catal Sci Technol 267Google Scholar
  49. 49.
    Bugaut X, Glorius F (2012) Chem Soc Rev 3511Google Scholar
  50. 50.
    Janssen-Müller D, Fleige M, Schlüns D, Wollenburg M, Daniliuc CG, Neugebauer J, Glorius F (2016) ACS Catal 5735Google Scholar
  51. 51.
    Rueping M, Parmar D, Sugimoto E (2016) Asymmetric Brønsted acid catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  52. 52.
    Parmar D, Sugiono E, Raja S, Rueping M (2014) Chem Rev 9047Google Scholar
  53. 53.
    Lee J-W, List B (2012) J Am Chem Soc 18245Google Scholar
  54. 54.
    Das S, Liu L, Zheng Y, Alachraf MW, Thiel W, De CK, List B (2016) J Am Chem Soc 9429Google Scholar
  55. 55.
    Yarlagadda S, Ramesh B, Reddy CR, Srinivas L, Sridhar B, Reddy BVS (2017) Org Lett 170Google Scholar
  56. 56.
    Phipps RJ, Hamilton GL, Toste DF (2012) Nature Chem 603Google Scholar
  57. 57.
    Mahlau M, List B (2013) Angew Chem Int Ed 518Google Scholar
  58. 58.
    Mayer S, List (2006) Angew Chem Int Ed 4193Google Scholar
  59. 59.
    Ooi T, Maruoka K (2007) Angew Chem Int 4222Google Scholar
  60. 60.
    Shirakawa S, Maruoka K (2013) Angew Chem Int Ed 4312Google Scholar
  61. 61.
    Albanese DCM, Foschi F, Penso M (2016) Org Process Res Dev 129Google Scholar
  62. 62.
    Kitamura M, Shirakawa S, Maruoka K (2005) Angew Chem Int Ed 1549Google Scholar
  63. 63.
    Starks CM (1971) J Am Chem Soc 195Google Scholar
  64. 64.
    Tan J, Yasuda N (2015) Org Process Res Dev 1731Google Scholar
  65. 65.
    Doyle AG, Jacobsen EN (2007) Chem Rev 5713Google Scholar
  66. 66.
    Knowles RR, Jacobsen EN (2010) Proc Natl Acad Sci 20678Google Scholar
  67. 67.
    Sigman MS, Jacobsen EN (1998) J Am Chem Soc 4901Google Scholar
  68. 68.
    Corey EJ, Grogan MJ (1999) Org Lett 157Google Scholar
  69. 69.
    Shao Z, Zhang H (2009) Chem Soc Rev 2745Google Scholar
  70. 70.
    Zhong C, Shi X (2010) Eur J Org Chem 2999Google Scholar
  71. 71.
    Allen AE, MacMillan DWC (2012) Chem Sci 633Google Scholar
  72. 72.
    Du Z, Shao Z (2013) Chem Soc Rev 1337Google Scholar
  73. 73.
    Afewerki S, Còrdova A (20160) Chem Rev 13512Google Scholar
  74. 74.
    Krautwald S, Sarlah D, Schfroth MA, Carreira EM (2013) Science 1065Google Scholar
  75. 75.
    Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR (2013) J Am Chem Soc 17735Google Scholar
  76. 76.
    Noesborg L, Halskov KS, Tur F, Mønsted SMN, Jørgensen KA (2015) Angew Chem Int Ed 10193Google Scholar
  77. 77.
    Meazza M, Tur F, Hammer N, Jørgensen KA (2017) Angew Chem Int Ed 1634Google Scholar
  78. 78.
    Pirnot MT, Rankic DA, Martin DBC, MacMillan DWC (2013) Science 1593Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial Chemistry “Toso Montanari”University of BolognaBolognaItaly

Personalised recommendations