Advertisement

Proteobacterial Methanotrophs, Methylotrophs, and Nitrogen

  • Lisa Y. Stein
Chapter

Abstract

Research on intersections between single-carbon and nitrogen metabolism have revealed a number of unexpected insights that have expanded our view of how proteobacterial methanotrophs and methylotrophs impact biogeochemical cycles. Aside from assimilating nitrogen as an essential element for cellular growth and metabolism, methanotrophs and methylotrophs metabolize and transform a diversity of inorganic and organic nitrogenous molecules and release reactive nitrogen species as products. Thus, methanotrophs and methylotrophs play a major role in both the global carbon and nitrogen cycles. This chapter outlines the more recent discoveries and unusual nitrogenous molecules and pathways used by proteobacterial methanotrophs and methylotrophs for assimilation, respiration, and regulation of their activities. The role of nitrogen in axenic cultures, complex communities, and bioindustrial applications is discussed.

References

  1. Aronson EL, Allison SD, Helliker BR (2013) Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 4:15CrossRefGoogle Scholar
  2. Bao ZH, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M et al (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N et al (2014) The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLos One 9:12Google Scholar
  4. Bédard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84PubMedPubMedCentralGoogle Scholar
  5. Bhattacharjee AS, Motlagh AM, Jetten MSM, Goel R (2016) Methane dependent denitrification- from ecosystem to laboratory-scale enrichment for engineering applications. Water Res 99:244–252CrossRefPubMedGoogle Scholar
  6. Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277CrossRefPubMedGoogle Scholar
  7. Bodelier PLE, Steenbergh AK (2014) Interactions between methane and nitrogen cycling: current metagenomic studies and future trends. Caister Academic, WymondhamGoogle Scholar
  8. Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424CrossRefPubMedGoogle Scholar
  9. Bowman J (2006) The methanotrophs - the families Methylococcaceae and Methylocystaceae. In: Dworkin M (ed) The prokaryotes. Springer, New York, N.Y., pp 266–289CrossRefGoogle Scholar
  10. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocyctis species, and a proposal that the family Methylococcaceae includes only the Group I methanotrophs. Int J Syst Bacteriol 43:735–753CrossRefGoogle Scholar
  11. Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2008) 15N2–DNA–stable isotope probing of diazotrophic methanotrophs in soil. Soil Biol Biochem 40:1272–1283CrossRefGoogle Scholar
  12. Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG (2011) Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Lett 322:82–89CrossRefPubMedGoogle Scholar
  13. Chistoserdova L (2014) Functional metagenomics of the nitrogen cycle in freshwater lakes with focus on methylotrophic bacteria. Caister Academic, WymondhamGoogle Scholar
  14. Chistoserdova L (2015) Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 99:5763–5779CrossRefPubMedGoogle Scholar
  15. Dam B, Dam S, Blom J, Liesack W (2013) Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp strain SC2. PLos One 8:15Google Scholar
  16. Dam B, Dam S, Kim Y, Liesack W (2014) Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp strain SC2. Environ Microbiol 16:3115–3127CrossRefPubMedGoogle Scholar
  17. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dedysh SN, Didriksen A, Danilova OV, Belova SE, Liebner S, Svenning MM (2015) Methylocapsa palsarum sp nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol 65:3618–3624CrossRefPubMedGoogle Scholar
  19. Ding ZW, Lu YZ, Fu L, Ding J, Zeng RJ (2017) Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 101:437–446CrossRefPubMedGoogle Scholar
  20. Doronina NV, Kudinova LV, Trotsenko YA (2000) Methylovorus mays sp nov.: A new species of aerobic, obligately methylotrophic bacteria associated with plants. Microbiology 69:599–603CrossRefGoogle Scholar
  21. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548CrossRefPubMedGoogle Scholar
  22. Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol 71:4199–4202CrossRefPubMedPubMedCentralGoogle Scholar
  23. Greenwood JA, Mills J, Tyler PD, Jones CW (1998) Physiological regulation, purification and properties of urease from Methylophilus methylotrophus. FEMS MIcrobiol Lett 160:131–135CrossRefGoogle Scholar
  24. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microb Rev 60:439–471Google Scholar
  25. Ho A, Angel R, Veraart AJ, Daebeler A, Jia ZJ, Kim SY et al (2016) Biotic interactions in microbial communities as modulators of biogeochemical processes: Methanotrophy as a model system. Front Microbiol 7:11CrossRefGoogle Scholar
  26. Hoefman S, van der Ha D, Boon N, Vandamme P, De Vos P, Heylen K (2014) Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiol 14:11CrossRefGoogle Scholar
  27. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A et al (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nature Commun 4:7CrossRefGoogle Scholar
  28. Kelly DP, McDonald IR, Wood AP (2014) The Family Methylobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 313–340CrossRefGoogle Scholar
  29. Khadem AF, Pol A, Jetten MSM, den Camp H (2010) Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiol SGM 156:1052–1059CrossRefGoogle Scholar
  30. Kits KD, Klotz MG, Stein LY (2015a) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232CrossRefPubMedGoogle Scholar
  31. Kits KD, Campbell DJ, Rosana AR, Stein LY (2015b) Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.01072
  32. Klotz MG, Stein LY (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278:146–456CrossRefPubMedGoogle Scholar
  33. Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol 211:57–64CrossRefPubMedGoogle Scholar
  34. Larmola T, Leppanen SM, Tuittila ES, Aarva M, Merila P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci 111:734–739CrossRefPubMedGoogle Scholar
  35. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14CrossRefPubMedGoogle Scholar
  36. Long Y, Guo QW, Li NN, Li BX, Tong TL, Xie SG (2017) Spatial change of reservoir nitrite-dependent methane-oxidizing microorganisms. Annals Microbiol 67:165–174CrossRefGoogle Scholar
  37. Maalcke WJ, Dietl A, Marritt SJ, Butt JN, Jetten MSM, Keltjens JT et al (2014) Structural basis of biological NO generation by octaheme oxidoreductases. J Biol Chem 289:1228–1242CrossRefPubMedGoogle Scholar
  38. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ et al (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–U120CrossRefPubMedGoogle Scholar
  39. Minamisawa K, Imaizumi-Anraku H, Bao ZH, Shinoda R, Okubo T, Ikeda S (2016) Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes Environ 31:4–10CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2013) Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants. J Bacteriol 195:2207–2211CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nayak DD, Agashe D, Lee M-C, Marx CJ (2016) Selection maintains apparently degenerate metabolic pathways due to tradeoffs in using methylamine for carbon versus nitrogen. Curr Biol 26:1416–1426CrossRefPubMedGoogle Scholar
  42. Nyerges G, Stein LY (2009) Ammonia co-metabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 297:131–136CrossRefPubMedGoogle Scholar
  43. Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76:5648–5651CrossRefPubMedPubMedCentralGoogle Scholar
  44. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr.  https://doi.org/10.1002/lno.10312
  45. Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Ramirez EG, Benson CR et al (2016) NC10 bacteria in marine oxygen minimum zones. ISME J 10:2067–2071CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pieja AJ, Sundstrom ER, Criddle CS (2011a) Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pieja AJ, Rostkowski KH, Criddle CS (2011b) Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic Proteobacteria. Microb Ecol 62:564–573CrossRefPubMedGoogle Scholar
  48. Rostkowski KH, Pfluger AR, Criddle CS (2013) Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour Technol 132:71–77CrossRefPubMedGoogle Scholar
  49. Shen LD, Wu HS, Gao ZQ, Li J, Liu X (2016) Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils. J Appl Microbiol 120:1552–1560CrossRefPubMedGoogle Scholar
  50. Skennerton CT, Ward LM, Michel A, Metcalfe K, Valiente C, Mullin S et al (2015) Genomic reconstruction of an uncultured hydrothermal vent gammaproteobacterial methanotroph (Family Methylothermaceae) indicates multiple adaptations to oxygen limitation. Front Microbiol 6:12CrossRefGoogle Scholar
  51. Stein LY, Klotz MG (2011) Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc T 39:1826–1831CrossRefGoogle Scholar
  52. Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MSM, Kalyuzhnaya MG et al (2011) Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp strain Rockwell (ATCC 49242). J Bacteriol 193:2668–2669CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MSM, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100CrossRefPubMedGoogle Scholar
  54. Tavormina PL, Ussler W, Steele JA, Connon SA, Klotz MG, Orphan VJ (2013) Abundance and distribution of diverse membrane-bound monooxygenase (Cu-MMO) genes within the Costa Rica oxygen minimum zone. Environ Microbiol Rep 5:414–423CrossRefPubMedGoogle Scholar
  55. Vaksmaa A, Luke C, van Alen T, Vale G, Lupotto E, Jetten MSM, Ettwig KF (2016) Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. FEMS Microbiol Ecol 92Google Scholar
  56. Vile MA, Kelman Wieder R, Živković T, Scott KD, Vitt DH, Hartsock JA et al (2014) N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328CrossRefGoogle Scholar
  57. Webb HK, Ng HJ, Ivanova EP (2014) The Family Methylocystaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 341–347CrossRefGoogle Scholar
  58. Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM et al (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8:941–955CrossRefPubMedGoogle Scholar
  59. Zhang TT, Zhou JT, Wang XW, Zhang Y (2017) Coupled effects of methane monooxygenase and nitrogen source on growth and poly-beta-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. J Environ Sci 52:49–57CrossRefGoogle Scholar
  60. Zhu BL, Bradford L, Huang SC, Szalay A, Leix C, Weissbach M et al (2017) Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems. Appl Environ Microbiol 83Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations