Advertisement

Biogas, Bioreactors and Bacterial Methane Oxidation

  • Ilka Madeleine Mühlemeier
  • Robert Speight
  • Peter James Strong
Chapter

Abstract

Pure methane is an energy-rich feedstock used to generate electricity, for domestic heating and cooking and as a vehicle fuel. Methane is the second most abundant greenhouse gas and is commonly available as the predominant component of natural gas or biogas. Biogas is viewed as a renewable methane supply, and its production and sources are discussed. Capture of this microbially-derived methane is a significant opportunity not only for heat and energy production, but also for its possible conversion to value-added products from methane-oxidising bacteria. Examples of methanotrophs cultured using methane from biogas are discussed, as well as bioreactor choice and provision of gas to the bacteria. Various bioreactor designs are explained in terms of applicability to methanotroph cultivation. Finally, methanotrophs are discussed in the context of two extremes: their use in methane mitigation and bioremediation versus the synthesis of biological products.

References

  1. Abbasi T, Tauseef SM et al (2012) Anaerobic digestion for global warming control and energy generation—an overview. Renew Sust Energy Rev 16(5):3228–3242CrossRefGoogle Scholar
  2. Ahoughalandari B, Cabral AR (2016) Influence of capillary barrier effect on biogas distribution at the base of passive methane oxidation biosystems: parametric study. Waste Manag 63:172–187CrossRefPubMedGoogle Scholar
  3. Appels L, Baeyens J et al (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combustion Sci 34(6):755–781CrossRefGoogle Scholar
  4. Blanchette CD, Knipe JM et al (2016) Printable enzyme-embedded materials for methane to methanol conversion. Nat Commun 7:11900CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bredwell MD, Srivastava P et al (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15(5):834–844CrossRefPubMedGoogle Scholar
  6. Chmiel H (2011) Bioprozesstechnik. Springer, HeidelbergCrossRefGoogle Scholar
  7. Dassama LMK, Kenney GE et al (2017) Methanobactins: from genome to function. Metallomics 9(1):7–20CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duan C, Luo M et al (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102(15):7349–7353CrossRefPubMedGoogle Scholar
  9. EEG (2017) Gesetz für den Ausbau erneuerbarer Energien. https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html
  10. EPA (2010) Methane and nitrous oxide emissions from natural sources. EPA 430-R-10-001Google Scholar
  11. Fendt S, Buttler A et al (2016) Comparison of synthetic natural gas production pathways for the storage of renewable energy. Wiley Interdiscip Rev Energy Environ 5(3):327–350CrossRefGoogle Scholar
  12. Gebert J, Singh BK et al (2009) Activity and structure of methanotrophic communities in landfill cover soils. Environ Microbiol Rep 1(5):414–423CrossRefPubMedGoogle Scholar
  13. Gilman A, Laurens LM et al (2015) Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microb Cell Fact 14(1):182CrossRefPubMedPubMedCentralGoogle Scholar
  14. Han B, Su T et al (2009) Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 83(4):669–677CrossRefPubMedGoogle Scholar
  15. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471PubMedPubMedCentralGoogle Scholar
  16. Hickey RF, Tsai SP et al (2011) Submerged membrane supported bioreactor for conversion of syngas components to liquid products. US Patent 8058058 B2Google Scholar
  17. Huber-Humer M, Gebert J et al (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26(1):33–46CrossRefPubMedGoogle Scholar
  18. IPCC (2013) IPCC Fifth Assessment Report (AR4). Climate change 2013: the physical science basis. Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Cambridge University Press, Cambridge, UK, pp 93–129Google Scholar
  19. Jiang H, Chen Y et al (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49(3):277–288CrossRefGoogle Scholar
  20. Kern JD, Characklis GW (2017) Low natural gas prices and the financial cost of ramp rate restrictions at hydroelectric dams. Energy Econ 61:340–350CrossRefGoogle Scholar
  21. Kim S, Dale B (2016) A distributed cellulosic biorefinery system in the US Midwest based on corn stover. Biofuels Bioprod Biorefin 10(6):819–832CrossRefGoogle Scholar
  22. Kinley RD, de Nys R et al (2016) The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim Prod Sci 56(3):282–289CrossRefGoogle Scholar
  23. Larsen, EB (2002). U-shape and/or nozzle U-loop fermentor and method of carrying out a fermentation process. US Patent 6492135 B1Google Scholar
  24. Lebrero R, Hernández L et al (2015) Two-liquid phase partitioning biotrickling filters for methane abatement: exploring the potential of hydrophobic methanotrophs. J Environ Manag 151:124–131CrossRefGoogle Scholar
  25. Lee E-H, Moon K-E et al (2017) Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J Biotechnol 242:1–10CrossRefPubMedGoogle Scholar
  26. Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresour Technol 100(16):3792–3798CrossRefPubMedGoogle Scholar
  27. Luna-delRisco M, Normak A et al (2011) Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron Res 9(1–2):331–342Google Scholar
  28. Manfredi S, Tonini D et al (2009) Landfilling of waste: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):825–836CrossRefPubMedGoogle Scholar
  29. Mehta PK, Ghose TK et al (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol Bioeng 37(6):551–556CrossRefPubMedGoogle Scholar
  30. Munasinghe PC, Khanal SK (2010a) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101(13):5013–5022CrossRefPubMedGoogle Scholar
  31. Munasinghe PC, Khanal SK (2010b) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26(6):1616–1621CrossRefPubMedGoogle Scholar
  32. Nikiema J, Brzezinski R et al (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Bio/Technol 6(4):261–284CrossRefGoogle Scholar
  33. Park S, Hanna ML et al (1991) Batch cultivation of Methylosinus trichosporium OB3b. I: production of soluble methane monoxygenase. Biotechnol Bioeng 38(4):423–433CrossRefPubMedGoogle Scholar
  34. Park S, Shah NN et al (1992) Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol Bioeng 40(1):151–157CrossRefPubMedGoogle Scholar
  35. Patel SKS, Jeong J-H et al (2016a) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26(12):2098–2105CrossRefPubMedGoogle Scholar
  36. Patel SKS, Mardina P et al (2016b) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208CrossRefPubMedGoogle Scholar
  37. Pen N, Soussan L et al (2014) An innovative membrane bioreactor for methane biohydroxylation. Bioresour Technol 174:42–52CrossRefPubMedGoogle Scholar
  38. Reeburgh WS, Whalen SC et al (1993) The role of methylotrophy in the global methane budget. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Limited, Andover, pp 1–14Google Scholar
  39. Scheutz C, Kjeldsen P et al (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27(5):409–455CrossRefPubMedGoogle Scholar
  40. Serra MCC, Pessoa FLP et al (2006) Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria. J Chem Thermodyn 38(12):1629–1633CrossRefGoogle Scholar
  41. Shah NN, Hanna ML et al (1996) Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-β-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol Bioeng 49(2):161–171CrossRefPubMedGoogle Scholar
  42. Sheets JP, Ge X et al (2016) Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour Technol 201:50–57CrossRefPubMedGoogle Scholar
  43. Shimomura T, Suda F et al (1997) Biodegradation of trichloroethylene by Methylocystis sp. strain M immobilized in gel beads in a fluidized-bed bioreactor. Water Res 31(9):2383–2386CrossRefGoogle Scholar
  44. Singh JS, Strong PJ (2015) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276CrossRefPubMedGoogle Scholar
  45. Speight JG, Lange NA et al (2005) Lange's handbook of chemistry. McGraw-Hill, New York, NYGoogle Scholar
  46. Strong PJ, Xie S et al (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018CrossRefPubMedGoogle Scholar
  47. Strong PJ, Kalyuzhnaya MG et al (2016) A methanotroph-based biorefinery: scenarios for generating multiple products from a single culture. Under submission, Bioresour TechnolGoogle Scholar
  48. Su Y, Pei J et al (2015) Potential application of biocover soils to landfills for mitigating toluene emission. J Hazard Mater 299:18–26CrossRefPubMedGoogle Scholar
  49. Takeguchi M, Miyakawa K et al (1998) Properties of the membranes containing the particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biometals 11(3):229–234CrossRefPubMedGoogle Scholar
  50. Takeguchi M, Miyakawa K et al (1999) The role of copper in particulate methane monooxygenase from Methylosinus trichosporium OB3b. J Mol Catal A Chem 137(1–3):161–168CrossRefGoogle Scholar
  51. Vega JL, Clausen EC et al (1990) Design of bioreactors for coal synthesis gas fermentations. Resour Conserv Recycl 3(2–3):149–160CrossRefGoogle Scholar
  52. WorldBank (2015) Zero Routine Flaring by 2030. http://www.worldbank.org/en/programs/zero-routine-flaring-by-2030
  53. Wu Y-M, Yang J et al (2017) Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour Technol 231:124–128CrossRefPubMedGoogle Scholar
  54. Yang L, Ge X et al (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sust Energy Rev 40:1133–1152CrossRefGoogle Scholar
  55. Yaws C, Braker W (2001) Matheson gas data book. McGraw-Hill, Parsippany, NJGoogle Scholar
  56. Yoo Y-S, Han J-S et al (2015) Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ Technol 36(8):983–991CrossRefPubMedGoogle Scholar
  57. Yoon S, Carey JN et al (2009) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83(5):949–956CrossRefPubMedGoogle Scholar
  58. Yu SS, Chen KH et al (2003) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (bath) with a hollow-fiber membrane bioreactor. J Bacteriol 185(20):5915–5924CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhang W, Ge X et al (2016) Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Process Biochem 51(7):838–844CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ilka Madeleine Mühlemeier
    • 1
  • Robert Speight
    • 2
  • Peter James Strong
    • 2
  1. 1.University of StuttgartStuttgartGermany
  2. 2.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations