Advertisement

Methanotrophy: An Evolving Field

  • Ludmila Chistoserdova
Chapter

Abstract

As a field, methanotrophy has emerged in the early twentieth century, marked by the discovery of microbes that could sustain growth on methane gas, using it as the source of both carbon and energy. One hundred plus years later, the field is mature, having accumulated deep knowledge on different modes of methane metabolism, in microbes of different domains of life, bacteria and archaea, both aerobic and anaerobic. The past decade in methanotrophy has been marked by new important discoveries, including novel guilds of methanotrophs, novel metabolic modes, and novel enzymes and pathways, demonstrating that methanotrophy is an evolving field, and, likely, much is yet to be discovered. Future challenges include deciphering the mechanistic details of methane activation by the particulate methane monooxygenase, including the source of electrons in this reaction, understanding the respective functions of redundant enzymes such as alternative methane monooxygenases, methanol dehydrogenases, and other enzymes and pathways, and obtaining further insights into the evolution of methanotrophy, both aerobic and anaerobic. While methane is practically unlimited on this planet, thus presenting an attractive, renewable source of carbon for biotechnological use, including synthesis of fuels, multiple technical challenges exist in harnessing extant methanotrophs as efficient commercial platforms or, reversely, in engineering established platforms, such as E. coli or yeast, to utilize carbon from methane.

Notes

Acknowledgments

Support by the US Department of Energy (DE-SC-0016224) is acknowledged.

Conflict of Interest

The author declares no conflicts of interest.

References

  1. Amyot M, Clayden MG, MacMillan GA, Perron T, Arscott-Gauvin A (2017) Fate and trophic transfer of rare Earth elements in temperate lake food webs. Environ Sci Technol 51:6009–6017PubMedCrossRefGoogle Scholar
  2. Anthony C (1982) The biochemistry of methylotrophs. Academic, LondonGoogle Scholar
  3. Anthony C (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428:2–9PubMedCrossRefGoogle Scholar
  4. Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94:109–137PubMedCrossRefGoogle Scholar
  5. Anthony C, Zatman LJ (1964) The methanol-oxidizing enzyme of Pseudomonas sp. M27. Biochem J 92:614–621PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anthony C, Zatman LJ (1965) The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 96:808–812PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anthony C, Zatman LJ (1967a) The microbial oxidation of methanol: purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J 104:953–959PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anthony C, Zatman LJ (1967b) The microbial oxidation of methanol: the prosthetic group of alcohol dehydrogenase of Pseudomonas sp. M27; A new oxidoreductase prosthetic group. Biochem J 104:960–969PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arshad A, Speth DR, de Graaf RM, Op den Camp HJ, Jetten MS, Welte CU (2015) A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front Microbiol 6:1423PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Krif MK, Veronesi ML, Hitz C, Lehmann MF (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324CrossRefGoogle Scholar
  11. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  12. Braakman R, Smith E (2012) The emergence and evolution of biological carbon-fixation. PLoS Comp Biol 8:e1002455CrossRefGoogle Scholar
  13. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622PubMedCrossRefGoogle Scholar
  14. Chistoserdova L (2013) The distribution and evolution of C1 transfer enzymes and evolution of the planctomycetes. In: Fuerst J (ed) New models for cell structure, origins and biology: planctomycetes. Springer, New York, pp 195–209CrossRefGoogle Scholar
  15. Chistoserdova L (2015) Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechol 99:5763–5779CrossRefGoogle Scholar
  16. Chistoserdova L (2016) Wide distribution of genes for tetrahydromethanopterin/methanofuran-linked C1 transfer reactions argues for their presence in the common ancestor of Bacteria and Archaea. Front Microbiol 7:1425PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chistoserdova L (2017) Application of omics approaches to studying methylotrophs and methylotroph communities. Curr Issues Mol Biol 24:119–142PubMedCrossRefGoogle Scholar
  18. Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME (1998) C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281:299–102CrossRefGoogle Scholar
  19. Chistoserdova L, Jenkins C, Kalyuzhnaya MG, Marx CJ, Lapidus A, Vorholt JA, Staley JT, Lidstrom ME (2004) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21:1234–1241PubMedCrossRefGoogle Scholar
  20. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Ann Rev Microbiol 63:477–499CrossRefGoogle Scholar
  21. Chu F, Lidstrom ME (2016) XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense. J Bacteriol 198:1317–1325PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chu F, Beck DA, Lidstrom ME (2016) MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense. PeerJ 4:e2435PubMedPubMedCentralCrossRefGoogle Scholar
  23. Colby J, Dalton H (1978) Resolution of the methane mono-oxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem J 171:461–468PubMedPubMedCentralCrossRefGoogle Scholar
  24. Crevecoeur S, Vincent WF, Comte J, Lovejoy C (2015) Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol 6:192PubMedPubMedCentralCrossRefGoogle Scholar
  25. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:1480–1151CrossRefGoogle Scholar
  26. Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L, Dedysh SN (2016) A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME J 10:2734–2743PubMedPubMedCentralCrossRefGoogle Scholar
  27. De la Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 14:188PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dedysh SN, Dunfield PF (2017) Cultivation of methanotrophs. In: McGenity TJ, Timmis KN, Nogales Fernandez BN, Hydrocarbon and lipid microbiology protocols, Springer Protocols Handbooks, Springer: Berlin Heidelberg 231–247Google Scholar
  29. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670PubMedPubMedCentralCrossRefGoogle Scholar
  30. Drake HL, Gössner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dunfield PF, Dedysh SN (2014) Methylocella: a gourmand among methanotrophs. Trends Microbiol 22:368–369PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882PubMedCrossRefGoogle Scholar
  33. Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci USA 104:10631–10636PubMedPubMedCentralCrossRefGoogle Scholar
  34. Erb TJ, Fuchs G, Alber BE (2009) (2S)-Methylsuccinyl-CoA dehydrogenase closes the ethylmalonyl-CoA pathway for acetyl-CoA assimilation. Mol Microbiol 73:992–1008PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548CrossRefPubMedGoogle Scholar
  36. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fitriyanto NA, Fushimi M, Matsunaga M, Pertiwiningrum A, Iwama T, Kawai K (2011) Molecular structure and gene analysis of Ce3+-induced methanol dehydrogenase of Bradyrhizobium sp. MAFF211645. J Biosci Bioeng 111:613–617PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fu Y, Li Y, Lidstrom M (2017) The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng 42:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  39. Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, Gregori G, Revsbech NP (2017) Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA 114:8319–8324PubMedPubMedCentralCrossRefGoogle Scholar
  40. Graef C, Hestnes AG, Svenning MM, Frenzel P (2011) The active methanotrophic community in a wetland from the high arctic. Environ Microbiol Rep 3:466–472PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gu W, Farhan Ul Haque M, AA DS, Semrau JD (2016) Uptake and effect of rare Earth elements on gene expression in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 363.  https://doi.org/10.1093/femsle/fnw129
  42. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462CrossRefPubMedGoogle Scholar
  43. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570CrossRefPubMedGoogle Scholar
  44. Hernandez ME, Beck DAC, Lidstrom ME, Chistoserdova L (2015) Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ 3:e801PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K (2011) Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J Biosci Bioeng 111:547–549PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805CrossRefPubMedGoogle Scholar
  47. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DA, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785CrossRefPubMedGoogle Scholar
  49. Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152PubMedCrossRefPubMedCentralGoogle Scholar
  50. Karlsen OA, Larsen O, Jensen HB (2011) The copper responding surfaceome of Methylococcus capsulatus Bath. FEMS Microbiol Lett 323:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kaserer H (1906) Uber die oxydation des wasserstoffes und des methans durch mikroorganismen. Zentr Bakt Parasitenk 15:573–576Google Scholar
  52. Keltjens JT, Pol A, Reimann J, Op den Camp HJ (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kemp MB, Quayle JR (1965) Incorporation of C1 units into allulose phosphate by methane-grown Pseudomonas methanica. Biochim Biophys Acta 107:174–176PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kemp MB, Quayle JR (1966) Microbial growth on C1 compounds. Incorporation of C1 units into allulose phosphate by extracts of Pseudomonas methanica. Biochem J 99:41–48PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kemp MB, Quayle JR (1967) Microbial growth on C1 compounds. Uptake of [14C]formaldehyde and [14C]formate by methane-grown Pseudomonas methanica and determination of the hexose labelling pattern after brief incubation with [14C]methanol. Biochem J 102:94–102PubMedPubMedCentralCrossRefGoogle Scholar
  56. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446PubMedPubMedCentralCrossRefGoogle Scholar
  57. Khomyakova M, Bükmez Ö, Thomas LK, Erb TJ, Berg IA (2011) A methylaspartate cycle in haloarchaea. Science 331:334–337PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232PubMedCrossRefPubMedCentralGoogle Scholar
  59. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedCrossRefPubMedCentralGoogle Scholar
  60. Krause SMB, Johnson T, Samadhi Karunaratne Y, Fu Y, Beck DAC, Chistoserdova L, Lidstrom ME (2017) Lanthanide-dependent cross-feeding of methane derived carbon is linked by microbial community interactions. Proc Natl Acad Sci USA 114:358–363PubMedCrossRefPubMedCentralGoogle Scholar
  61. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091PubMedCrossRefPubMedCentralGoogle Scholar
  62. Large PJ, Quayle JR (1963) Microbial growth on C(1) compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochem J 87:386–396PubMedPubMedCentralCrossRefGoogle Scholar
  63. Large PJ, Peel D, Quayle JR (1961) Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J 81:470–480PubMedPubMedCentralCrossRefGoogle Scholar
  64. Large PJ, Peel D, Quayle JR (1962a) Microbial growth on C(1) compounds. 3. Distribution of radioactivity in metabolites of methanol-grown Pseudomonas AM1 after incubation with [C]methanol and [C]bicarbonate. Biochem J 82:483–488PubMedPubMedCentralCrossRefGoogle Scholar
  65. Large PJ, Peel D, Quayle JR (1962b) Microbial growth on C(1) compounds. 4. Carboxylation of phosphoenolpyruvate in methanol-grown Pseudomonas AM1. Biochem J 85:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, Teske AP (2016) Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 18:1200–1211PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lidstrom ME, Anthony C, Biville F, Gasser F, Goodwin P, Hanson RS, Harms N (1994) New unified nomenclature for genes involved in the oxidation of methanol in gram-negative bacteria. FEMS Microbiol Lett 117:103–106PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lloyd KG, Alperin MJ, Teske A (2011) Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. Environ Microbiol 13:2548–2564PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lovley DR (2017) Happy together: microbial communities that hook up to swap electrons. ISME J 11:327–336PubMedCrossRefPubMedCentralGoogle Scholar
  70. Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl Environ Microbiol 76:5773–5784PubMedPubMedCentralCrossRefGoogle Scholar
  71. Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB (2017) Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 607–608:23–31PubMedCrossRefPubMedCentralGoogle Scholar
  72. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535CrossRefPubMedGoogle Scholar
  73. Milucka J, Kirf M, Krupke A, Lam P, Littmann S, Kuypers MMM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2013) Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants. J Bacteriol 195:2207–2211PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, Kamanda Ngugi D, Göker M, Klenk HP, Bajic V, Stingl U (2016) Metabolic traits of an uncultured archaeal lineage--MSBL1--from brine pools of the Red Sea. Sci Rep 6:19181PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S, Iwama T, Hayakawa T, Kawai K (2012) A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS One 7:e50480PubMedPubMedCentralCrossRefGoogle Scholar
  77. Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306CrossRefGoogle Scholar
  78. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487CrossRefPubMedGoogle Scholar
  79. Oshkin IY, Beck DA, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dadysh SN, Lidstrom ME, Chistoserdova L (2015) Methane fed microcosms show differential community dynamics and pinpoint specific taxa involved in communal response. ISME J 9:1119–1129PubMedCrossRefPubMedCentralGoogle Scholar
  80. Oswald K, Milucka J, Brand A, Littmann S, Wehrli B, Kuypers MM et al (2015) Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PloS One 10:e0132574PubMedPubMedCentralCrossRefGoogle Scholar
  81. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B et al (2016a) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr.  https://doi.org/10.1002/lno.10312
  82. Oswald K, Jegge C, Tischer J, Berg J, Brand A, Miracle MR et al (2016b) Methanotrophy under versatile conditions in the water column of the ferruginous meromictic lake La Cruz (Spain). Front Microbiol 7:1762PubMedPubMedCentralGoogle Scholar
  83. Padilla CC, Bertagnolli AD, Bristow LA, Sarode N, Glass JB, Thamdrup B, Stewart FJ (2017) Metagenomic binning recovers a transcriptionally active gammaproteobacterium linking methanotrophy to partial denitrification in an anoxic oxygen minimum zone. Front Mar Sci.  https://doi.org/10.3389/fmars.2017.00023
  84. Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA 106:4846–4851PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, Op den Camp HJ (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264PubMedCrossRefGoogle Scholar
  86. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878PubMedCrossRefGoogle Scholar
  87. Proctor HM, Norris JR, Ribbons DW (1969) Fine structure of methane-utilizing bacteria. J Appl Microbiol 32:118–121Google Scholar
  88. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damsté JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921CrossRefPubMedGoogle Scholar
  89. Rasigraf O, Kool DM, Jetten MS, Sinninghe Damsté JS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460PubMedPubMedCentralCrossRefGoogle Scholar
  90. Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344CrossRefGoogle Scholar
  91. Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett 47:345–352CrossRefGoogle Scholar
  92. Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22:307–319PubMedCrossRefGoogle Scholar
  93. Salem AR, Large PJ, Quayle JR (1972) Glycine formation during growth of Pseudomonas AM1 on methanol and succinate. Biochem J 128:1203–1211PubMedPubMedCentralCrossRefGoogle Scholar
  94. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608PubMedCrossRefGoogle Scholar
  95. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707CrossRefPubMedGoogle Scholar
  96. Schmidt S, Christen P, Kiefer P, Vorholt JA (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156:2575–2586PubMedCrossRefGoogle Scholar
  97. Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ (2016) Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10:1696–1705PubMedPubMedCentralCrossRefGoogle Scholar
  98. Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323:1–12PubMedCrossRefGoogle Scholar
  99. Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U (2011) Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101PubMedCrossRefGoogle Scholar
  100. Söhngen NL (1906) Uber bakterien, welche methan als kohlenstoffnahrung energiequelle gebrauchen. Zentr Bakt Parasitenk 15:513–517Google Scholar
  101. Soo VW, McAnulty MJ, Tripathi A, Zhu F, Zhang L, Hatzakis E, Smith PB, Agrawal S, Nazem-Bokaee H, Gopalakrishnan S, Salis HM, Ferry JG, Maranas CD, Patterson AD, Wood TK (2016) Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Fact 15:11PubMedPubMedCentralCrossRefGoogle Scholar
  102. Strøm T, Ferenci T, Quayle JR (1974) The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Biochem J 144:465–476PubMedPubMedCentralCrossRefGoogle Scholar
  103. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018PubMedCrossRefGoogle Scholar
  104. Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs KU, Jensen GJ, Dubilier N, Orphan VJ (2017) Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 103:242–252PubMedCrossRefGoogle Scholar
  105. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406PubMedCrossRefGoogle Scholar
  106. Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170PubMedCrossRefGoogle Scholar
  107. Tonge GM, Harrison DE, Higgins IJ (1977) Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem J 161:333–344PubMedPubMedCentralCrossRefGoogle Scholar
  108. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 63. Academic, Cambridge, MA, pp 183–229Google Scholar
  109. Turetta C, Barbaro E, Capodaglio G, Barbante C (2017) Dissolved rare earth elements in the central-western sector of the Ross Sea, Southern Ocean: geochemical tracing of seawater masses. Chemosphere 183:444–453PubMedCrossRefGoogle Scholar
  110. Tveit A, Schwacke R, Svenning MM, Urich T (2013) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7:299–311PubMedCrossRefGoogle Scholar
  111. Tveit AT, Urich T, Svenning MM (2014) Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol 80:5761–5772PubMedPubMedCentralCrossRefGoogle Scholar
  112. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170PubMedCrossRefGoogle Scholar
  113. Vekeman B, Speth D, Wille J, Cremers G, De Vos P, Op den Camp HJ, Heylen K (2016) Genome characteristics of two novel Type I methanotrophs enriched from North Sea sediments containing exclusively a lanthanide-dependent XoxF5-type methanol dehydrogenase. Microb Ecol 72:503–509PubMedCrossRefGoogle Scholar
  114. Vorholt JA, Chistoserdova L, Stolyar SM, Lidstrom ME, Thauer RK (1999) Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757PubMedPubMedCentralGoogle Scholar
  115. Vu HN, Subuyuj GA, Vijayakumar S, Good NM, Martinez-Gomez NC, Skovran E (2016) Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 98:1250–1259CrossRefGoogle Scholar
  116. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590PubMedCrossRefGoogle Scholar
  117. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116PubMedCrossRefPubMedCentralGoogle Scholar
  118. Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA, Papoutsakis ET (2017) Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 39:49–59PubMedCrossRefPubMedCentralGoogle Scholar
  119. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218PubMedCrossRefGoogle Scholar
  120. Yu Z, Chistoserdova L (2017) Communal metabolism of methane and the rare Earth element switch. J Bacteriol.  https://doi.org/10.1128/JB.00328-17

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations