Advertisement

Cell Culture Bioprocess Technology: Biologics and Beyond

  • Sofie O’Brien
  • Yonsil Park
  • Samira Azarin
  • Wei-Shou Hu
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Scientists have been growing vertebrate cells in culture for over a century. Initially, this cell culture involved placing tissues isolated from animals in a nutrient solution for observation. Eventually, some cells grew out from the tissue explant and began to form cell layers. Over the years, scientists developed a better understanding of the nutritional requirements of cells, established methods to isolate them from tissues and to propagate them, and acquired the ability to use them as tools for conducting research to develop new knowledge on cells and organisms. Ultimately, we learned ways to use them to produce vaccines and medicines.

References

  1. 1.
    Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature. 1979;282:615–6.  https://doi.org/10.1038/282615a0.CrossRefPubMedGoogle Scholar
  2. 2.
    Amit M, Itskovitz-Eldor J. Feeder-free culture of human embryonic stem cells. Methods Enzymol. 2006;420:37–49.  https://doi.org/10.1016/S0076-6879(06)20003-X.CrossRefPubMedGoogle Scholar
  3. 3.
    Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12.CrossRefGoogle Scholar
  4. 4.
    Baicus A. History of polio vaccination. World J Virol. 2012;1(4):108–14.  https://doi.org/10.5501/wjv.v1.i4.108.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bank A, Dorazio R, Leboulch P. A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci. 2005;1054:308–16.  https://doi.org/10.1196/annals.1345.007.CrossRefPubMedGoogle Scholar
  6. 6.
    Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2:0554–60.  https://doi.org/10.1371/journal.pmed.0020161.CrossRefGoogle Scholar
  7. 7.
    Barnes D, Sato G. Serum-free cell culture: a unifying approach. Cell. 1980;22:649–55.CrossRefGoogle Scholar
  8. 8.
    Caplan A. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.  https://doi.org/10.1002/jor.1100090504.CrossRefPubMedGoogle Scholar
  9. 9.
    Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.  https://doi.org/10.1016/j.stem.2011.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, Bhatia M. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102(3):906–15.  https://doi.org/10.1182/blood-2003-03-0832.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10:230–52.  https://doi.org/10.1038/cmi.2013.10.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chunmakov K. Current status and future of polio vaccine and vaccination. In: Lukashevich I, Shirwan H, editors. Novel technologies for vaccine development. New York: Springer; 2014. p. 87–112.Google Scholar
  13. 13.
    Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70(11):3240–4.CrossRefGoogle Scholar
  14. 14.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.  https://doi.org/10.1016/j.stem.2008.07.003.CrossRefPubMedGoogle Scholar
  15. 15.
    D’Amour K, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.  https://doi.org/10.1038/nbt1259.CrossRefPubMedGoogle Scholar
  16. 16.
    Eagle H. Nutrition needs of mammalian cells in tissue culture. Science. 1955;122:501–4.CrossRefGoogle Scholar
  17. 17.
    Earle WR, Schilling EL, Stark TH, Straus NP, Brown MF, Shelton E. Production of malignancy in vitro IV. The mouse fibroblast cultures and changes seen in the living cells. J Natl Cancer Inst. 1943;4:165–212.Google Scholar
  18. 18.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryo. Nature. 1981;292:154–6.CrossRefGoogle Scholar
  19. 19.
    Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952;12:264–5.Google Scholar
  20. 20.
    Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974;3(2):127–33.  https://doi.org/10.1016/0092-8674(74)90116-0.CrossRefPubMedGoogle Scholar
  21. 21.
    Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci. 1976;73:2424–8.CrossRefGoogle Scholar
  22. 22.
    Ham RG. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A. 1965;53:288–93.CrossRefGoogle Scholar
  23. 23.
    Hannan NR, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc. 2013;8(2):430–7.CrossRefGoogle Scholar
  24. 24.
    Harrison RG. Observation on the living developing nerve fiber. Proc Soc Exp Biol Med. 1907;4:140–3.CrossRefGoogle Scholar
  25. 25.
    Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal: CCS. 2011;9:12.  https://doi.org/10.1186/1478-811X-9-12.CrossRefPubMedGoogle Scholar
  26. 26.
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.  https://doi.org/10.1016/0014-4827(61)90192-6.CrossRefGoogle Scholar
  27. 27.
    Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936–49.  https://doi.org/10.1093/glycob/cwp079.CrossRefPubMedGoogle Scholar
  28. 28.
    Jacobs JP, Jones CM, Baille JP. Characteristics of a human diploid cell designated MRC-5. 1970.  https://doi.org/10.1038/227168a0.CrossRefGoogle Scholar
  29. 29.
    Janowska-Wieczorek A, Marquez-Curtis LA, Shirvaikar N, Ratajczak MZ. The role of complement in the trafficking of hematopoietic stem/progenitor cells. Transfusion. 2012;52:2706–16.  https://doi.org/10.1111/j.1537-2995.2012.03636.x.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kalani MYS, Martirosyan N. Direct conversion of fibroblasts to functional neurons. World Neurosurg. 2012;77:7–8.  https://doi.org/10.1016/j.wneu.2011.11.002.CrossRefPubMedGoogle Scholar
  31. 31.
    Kaufman RJ, Sharp PA. Construction of a modular dihydrofolate-reductase Cdna gene – analysis of signals utilized for efficient expression. Mol Cell Biol. 1982;2(11):1304–19.CrossRefGoogle Scholar
  32. 32.
    Kelaini S. Direct reprogramming of adult cells : avoiding the pluripotent state. Stem Cells and Cloning: Adv Appl. 2014;2014:19–29.Google Scholar
  33. 33.
    Kirchhoff C, Araki Y, Huhtaniemi I, Matusik RJ, Osterhoff C, Poutanen M, Samalecos A, Sipilä P, Suzuki K, Orgebin-Crist MC. Immortalization by large T-antigen of the adult epididymal duct epithelium. Mol Cell Endocrinol. 2004;216:83–94.  https://doi.org/10.1016/j.mce.2003.10.073.CrossRefPubMedGoogle Scholar
  34. 34.
    Klein R, Teodorescu M. Propagation of poliovirus of Cercopithecus monkey kidney cells in rolling bottles. Archives Roumaines De Pathologie Experimentales Et De Microbiologie. 1969;28:247–52.PubMedGoogle Scholar
  35. 35.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.CrossRefGoogle Scholar
  36. 36.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.  https://doi.org/10.1126/science.8493529.CrossRefPubMedGoogle Scholar
  37. 37.
    Leen AM, Rooney CM, Foster AE. Improving T cell therapy for cancer. Annu Rev Immunol. 2007;25:243–65.  https://doi.org/10.1146/annurev.immunol.25.022106.141527.CrossRefPubMedGoogle Scholar
  38. 38.
    Lundberg AS, Randell SH, Stewart S, Elenbaas B, Hartwell K, Brooks MW, Fleming MD, Olsen JC, Miller SW, Weinberg R, Hahn WC. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene. 2002;21:4577–86.  https://doi.org/10.1038/sj.onc.1205550.CrossRefPubMedGoogle Scholar
  39. 39.
    Macpherson I, Stoker M. Polyoma transformation of hamster cell clones—an investigation of genetic factors affecting cell competence. Virology. 1962;16:147–51.CrossRefGoogle Scholar
  40. 40.
    Majumdar MK, Thiede M, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176:57–66.  https://doi.org/10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7.CrossRefPubMedGoogle Scholar
  41. 41.
    Margariti A, Winkler B, Karamariti E, Zampetaki A, Tsai T-n, Baban D, Ragoussis J, Huang Y, Han J-DJ, Zeng L, Hu Y, Xu Q. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci U S A. 2012;109:13793–8.  https://doi.org/10.1073/pnas.1205526109.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Masip M, Veiga A, Belmonte JCI, Simón C. Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod. 2010;16:856–68.  https://doi.org/10.1093/molehr/gaq059.CrossRefPubMedGoogle Scholar
  43. 43.
    Massard C, Zermati Y, Pauleau a-L, Larochette N, Métivier D, Sabatier L, Kroemer G, Soria J-C. hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene. 2006;25:4505–14.  https://doi.org/10.1038/sj.onc.1209487.CrossRefPubMedGoogle Scholar
  44. 44.
    Mats B, Anders L, Anders N, Claes O, Olle I, Lars P. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.  https://doi.org/10.1056/NEJM199410063311401.CrossRefGoogle Scholar
  45. 45.
    McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis. 2008;28(2):210–7.  https://doi.org/10.1055/s-2008-1073120.CrossRefPubMedGoogle Scholar
  46. 46.
    Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20:833–46.  https://doi.org/10.1038/nm.3647.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mikkers HM, Feund C, Mummery CL, Hoeben RC. Cell replacement therapies: is it time to reprogram? Hum Gene Ther. 2014;25:866–74.  https://doi.org/10.1089/hum.2014.097.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mitalipov S, Wolf D. Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol. 2009;114:185–99.  https://doi.org/10.1007/10_2008_45.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mowat GN, Chapman G. Growth of foot and mouth disease virus in a fibroblastic cell line derived from hamster kidneys. Nature. 1962;194(4825):253.CrossRefGoogle Scholar
  50. 50.
    Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13(6):547–57.  https://doi.org/10.1038/Nmat3937.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661–80.  https://doi.org/10.1016/j.cell.2008.02.008.CrossRefPubMedGoogle Scholar
  52. 52.
    Nunberg JH, Kaufman RJ, Schimke RT, Urlaub G, Chasin LA. Amplified dihydrofolate-reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese-hamster ovary cell line. Proc Natl Acad Sci U S A. 1978;75(11):5553–6.  https://doi.org/10.1073/pnas.75.11.5553.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nyberg SL, Ken S, Peshwa MV, Sielaff TD, Crotty PL, Mann HJ, Remmel RP, Payne WD, Hu WS, Cerra FB. Extracorporeal application of a gel-entrapment, bioartificial liver: demonstration of drug metabolism and other biochemical functions. Cell Transplant. 1993a;2(6):441–52.CrossRefGoogle Scholar
  54. 54.
    Nyberg SL, Shatford RA, Peshwa MV, White JG, Cerra FB, Hu WS. Evaluation of a hepatocyte-entrapment hollow fiber bioreactor: a potential bioartificial liver. Biotechnol Bioeng. 1993b;41(2):194–203.  https://doi.org/10.1002/bit.260410205.CrossRefPubMedGoogle Scholar
  55. 55.
    Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Phil Trans R Soc B 2015:370(1680).  https://doi.org/10.1098/rstb.2014.0367.CrossRefGoogle Scholar
  56. 56.
    Park H, Cannizzaro C, Vunjak-Novakovic G, Langer R, Vacanti CA, Farokhzad OC. Nanofabrication and microfabrication of functional materials for tissue engineering. Tissue Eng. 2007;13(8):1867–77.  https://doi.org/10.1089/ten.2006.0198.CrossRefPubMedGoogle Scholar
  57. 57.
    Puck TT. The genetics of somatic mammalian cells. Adv Biol Med Phys. 1957;5:75–101.CrossRefGoogle Scholar
  58. 58.
    Ramboer E, Craene BD, Kock JD, Vanhaecke T, Berx G, Rogiers V, Vinken M. Review strategies for immortalization of primary hepatocytes. J Hepatol. 2014;61:925–43.  https://doi.org/10.1016/j.jhep.2014.05.046.CrossRefPubMedGoogle Scholar
  59. 59.
    Ratcliffe E, Glen KE, Naing MW, Williams DJ. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull. 2013;108:73–94.  https://doi.org/10.1093/bmb/ldt034.CrossRefPubMedGoogle Scholar
  60. 60.
    Richardson JB, Caterson B, Evans EH, Ashton BA, Roberts S. Repair of human articular cartilage after implantation of autologous chondrocytes. Bone Joint J. 1999;81-B:1064–8.CrossRefGoogle Scholar
  61. 61.
    Rodriguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gomez-Lechon MJ. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica. 2002;32(6):505–20.  https://doi.org/10.1080/00498250210128675.CrossRefPubMedGoogle Scholar
  62. 62.
    Russell WC, Graham FL, Smiley J, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36:59–72.  https://doi.org/10.1099/0022-1317-36-1-59.CrossRefPubMedGoogle Scholar
  63. 63.
    Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses: IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97:695.CrossRefGoogle Scholar
  64. 64.
    Schneider U, Schwenk H-U, Bornkamm G. Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 1977;19:621–6.  https://doi.org/10.1002/ijc.2910190505.CrossRefPubMedGoogle Scholar
  65. 65.
    Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998;95:13726–31.CrossRefGoogle Scholar
  66. 66.
    Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells. 2010;28(1):152–63.  https://doi.org/10.1002/stem.245.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58. https://doi.org/10.1098/rsif.2009.0403.CrossRefGoogle Scholar
  68. 68.
    Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle M, Duris C, North PE, Dalton S, Duncan S. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.  https://doi.org/10.1002/hep.23354.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008;6:2237–47.  https://doi.org/10.1371/journal.pbio.0060253.CrossRefGoogle Scholar
  70. 70.
    Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol Mech Dis. 2011;6:457–78.  https://doi.org/10.1146/annurev-pathol-011110-130230.CrossRefGoogle Scholar
  71. 71.
    Smith AU, Polge C. Survival of spermatozoa at low temperatures. Nature. 1950;166:668–9.  https://doi.org/10.1038/166668a0.CrossRefPubMedGoogle Scholar
  72. 72.
    Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32.  https://doi.org/10.1016/j.molmed.2011.03.005.CrossRefPubMedGoogle Scholar
  73. 73.
    Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604.  https://doi.org/10.1038/nature11139.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Stanley P. Golgi glycosylation. Cold Spring Harb Perspect Biol. 2011;3(4):a005199.CrossRefGoogle Scholar
  75. 75.
    Stewart SA, Hahn WC, O'Connor BF, Banner EN, Lundberg AS, Modha P, Mizuno H, Brooks MW, Fleming M, Zimonjic DB, Popescu NC, Weinberg RA. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci U S A. 2002;99:12606–11.  https://doi.org/10.1073/pnas.182407599.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sutmoller P, Bartelling SJ. The history of foot and mouth disease vaccine development: a personal perspective. In: Dodet B, Vicari M (eds) Foot-and-mouth disease: control strategies. Éditions scientifiques et médicales Elsevier SAS, France, 2003. pp 259–72.Google Scholar
  77. 77.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.  https://doi.org/10.1016/j.cell.2007.11.019.CrossRefGoogle Scholar
  78. 78.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.  https://doi.org/10.1016/j.cell.2006.07.024.CrossRefGoogle Scholar
  79. 79.
    Thomson JA, Itskovitz-eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Adv Sci. 1998;282:1145–7.  https://doi.org/10.1126/science.282.5391.1145.CrossRefGoogle Scholar
  80. 80.
    Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963;17:299–313.CrossRefGoogle Scholar
  81. 81.
    Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22.  https://doi.org/10.1016/j.stem.2015.06.007.CrossRefPubMedGoogle Scholar
  82. 82.
    Trounson A, Thakar R, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9:52.  https://doi.org/10.1186/1741-7015-9-52.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    van Wezel AL. Growth of cell strains and primary cells on microcarriers in homogeneous culture. Nature. 1967;216:64–5.CrossRefGoogle Scholar
  84. 84.
    Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28:589–603.  https://doi.org/10.3233/RNN-2010-0543.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Vilcek J, Havell EA. Stabilization of interferon messenger RNA activity by treatment of cells with metabolic inhibitors and lowering of the incubation temperature. Proc Natl Acad Sci U S A. 1973;70:3909–13.CrossRefGoogle Scholar
  86. 86.
    Wang Y, Cui C-B, Yamauchi M, Miguez P, Roach M, Malavarca R, Costello MJ, Cardinale V, Wauthier E, Barbier C, Gerber D, Alvaro D, Reid LM. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology (Baltimore, MD). 2011;53:293–305.  https://doi.org/10.1002/hep.24012.CrossRefGoogle Scholar
  87. 87.
    Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403.  https://doi.org/10.1146/annurev.cellbio.17.1.387.CrossRefPubMedGoogle Scholar
  88. 88.
    Wurm F. CHO quasispecies—implications for manufacturing processes. Processes. 2013;1(3):296.CrossRefGoogle Scholar
  89. 89.
    Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457:97–101.  https://doi.org/10.1038/nature07639.CrossRefPubMedGoogle Scholar
  90. 90.
    Yasumura Y, Kawakita M. The research for the SV40 by means of tissue culture technique. Nippon Rinsho. 1963;21(6):1201–19.Google Scholar
  91. 91.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.  https://doi.org/10.1126/science.1151526.CrossRefPubMedGoogle Scholar
  92. 92.
    Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455:627–32.  https://doi.org/10.1038/nature07314.CrossRefPubMedGoogle Scholar
  93. 93.
    Zhu S, Rezvani M, Harbell J, Mattis AN, Wolfe AR, Benet LZ, Willenbring H, Ding S. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508:93–7.  https://doi.org/10.1038/nature13020.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sofie O’Brien
    • 1
  • Yonsil Park
    • 1
  • Samira Azarin
    • 1
  • Wei-Shou Hu
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations