Malignant Pain

  • Kenneth D. Candido
  • Teresa M. Kusper


Pain is a ubiquitous complication of the antineoplastic therapy in many cancer patients and survivors. A satisfactory pain management might possibly be the most challenging aspect of symptom control in this patient population. With the development of more elaborate and efficacious oncologic therapies, it is reasonable to expect a rise in the prevalence of malignant pain syndromes. Suboptimal pain relief has several important implications on patients’ health, well-being, and quality of life. Poor pain control can lead to physical decline, sleep disturbance, maladaptive coping skills, difficulty or lack of motivation to participate in therapy, increased financial expenditure, anhedonia or depressive illness, withdrawal or isolation, and suicidality. Interventional techniques are a critical part of the multimodal approach to malignant pain management. They are a powerful tool in abolishing difficult to treat or refractory cancer-related pain states. The focus of this chapter is a concise overview of major pain management interventions available to control the cancer-related pain: peripheral nerve blocks, neurolytic procedures, neuromodulation, intrathecal drug devices, and vertebral augmentation. While the chapter is not all inclusive, it highlights key points related to selected interventions and provides data supporting the use of individual modalities in the treatment of cancer-related pain. Decreased opioid requirements and reduced risk of medication-related adverse reactions are most notable benefits of the interventional pain management, which are confirmed by a growing number of available evidence.


Malignant pain Cancer-related pain Breakthrough pain Opioids Chemotherapy-induced pain Interventional pain techniques Regional anesthesia Peripheral nerve blocks Neurolytic blocks Intrathecal pump Neuromodulation Spinal cord stimulator Vertebral augmentation Vertebroplasty Kyphoplasty 


  1. 1.
    Caraceni A, Portenoy RK. An international survey of cancer pain characteristics and syndromes. IASP task force on cancer pain. International Association for the Study of Pain. Pain. 1999;82(3):263–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Bruera E, Kim HN. Cancer pain. JAMA. 2003;290(18):2476–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Grond S, Zech D, Diefenbach C, Radbruch L, Lehmann KA. Assessment of cancer pain: a prospective evaluation in 2266 cancer patients referred to a pain service. Pain. 1996;64(1):107–14.PubMedCrossRefGoogle Scholar
  4. 4.
    Organization WH. Cancer Pain Relief. 1986:1–70.Google Scholar
  5. 5.
    Deandrea S, Montanari M, Moja L, Apolone G. Prevalence of undertreatment in cancer pain. A review of published literature. Ann Oncol. 2008;19(12):1985–91.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Vargas-Schaffer G. Is the WHO analgesic ladder still valid? Twenty-four years of experience. Can Fam Physician. 2010;56(6):514–7. e202-5PubMedPubMedCentralGoogle Scholar
  7. 7.
    Klepstad P, Kurita GP, Mercadante S, Sjogren P. Evidence of peripheral nerve blocks for cancer-related pain: a systematic review. Minerva Anestesiol. 2015;81(7):789–93.PubMedGoogle Scholar
  8. 8.
    Vallejo R, de Leon-Casasola O, Benyamin R. Opioid therapy and immunosuppression: a review. Am J Ther. 2004;11(5):354–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Stone JB, Klein MA, Furman MB. Intercostal Blockade. In: Furman MB, editor. Atlas of image-guided spinal procedures. Philadelphia, PA: Elsevier Saunders; 2013. p. 231–5.Google Scholar
  10. 10.
    Ahmed Z, Samad K, Ullah H. Role of intercostal nerve block in reducing postoperative pain following video-assisted thoracoscopy: a randomized controlled trial. Saudi J Anaesth. 2017;11(1):54–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wong FC, Lee TW, Yuen KK, Lo SH, Sze WK, Tung SY. Intercostal nerve blockade for cancer pain: effectiveness and selection of patients. Hong Kong Med J. 2007;13(4):266–70.PubMedGoogle Scholar
  12. 12.
    Peng J, Wang SD. Effect of anesthesia combined with intercostal nerve block on analgesia for esophageal cancer after operation. Eur Rev Med Pharmacol Sci. 2015;19(12):2293–6.PubMedGoogle Scholar
  13. 13.
    Matchett G. Intercostal nerve block and Neurolysis for intractable cancer pain. J Pain Palliat Care Pharmacother. 2016;30(2):114–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Terkawi AS, Tsang S, Sessler DI, Terkawi RS, Nunemaker MS, Durieux ME, et al. Improving analgesic efficacy and safety of thoracic paravertebral block for breast surgery: a mixed-effects meta-analysis. Pain Physician. 2015;18(5):E757–80.PubMedGoogle Scholar
  15. 15.
    Bashandy GM, Abbas DN. Pectoral nerves I and II blocks in multimodal analgesia for breast cancer surgery: a randomized clinical trial. Reg Anesth Pain Med. 2015;40(1):68–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Wahba SS, Kamal SM. Thoracic paravertebral block versus pectoral nerve block for analgesia after breast surgery. Egyptian J Anaesth. 2013;30:129–35.CrossRefGoogle Scholar
  17. 17.
    Kulhari S, Bharti N, Bala I, Arora S, Singh G. Efficacy of pectoral nerve block versus thoracic paravertebral block for postoperative analgesia after radical mastectomy: a randomized controlled trial. Br J Anaesth. 2016;117(3):382–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Wijayasinghe N, Andersen KG, Kehlet H. Analgesic and sensory effects of the Pecs local anesthetic block in patients with persistent pain after breast cancer surgery: a pilot study. Pain Pract. 2016;Google Scholar
  19. 19.
    Wisotzky EM, Saini V, Kao C. Ultrasound-guided intercostobrachial nerve block for intercostobrachial neuralgia in breast cancer patients: a case series. PM R. 2016;8(3):273–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Wijayasinghe N, Duriaud HM, Kehlet H, Andersen KG. Ultrasound guided intercostobrachial nerve blockade in patients with persistent pain after breast cancer surgery: a pilot study. Pain Physician. 2016;19(2):E309–18.PubMedGoogle Scholar
  21. 21.
    Vranken JH, Zuurmond WW, de Lange JJ. Continuous brachial plexus block as treatment for the Pancoast syndrome. Clin J Pain. 2000;16(4):327–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Buchanan D, Brown E, Millar F, Mosgrove F, Bhat R, Levack P. Outpatient continuous interscalene brachial plexus block in cancer-related pain. J Pain Symptom Manag. 2009;38(4):629–34.CrossRefGoogle Scholar
  23. 23.
    Sato S, Yamashita S, Iwai M, Mizuyama K, Satsumae T. Continuous interscalene block for cancer pain. Reg Anesth. 1994;19(1):73–5.PubMedGoogle Scholar
  24. 24.
    Zinboonyahgoon N, Vlassakov K, Abrecht CR, Srinivasan S, Narang S. Brachial plexus block for cancer-related pain: a case series. Pain Physician. 2015;18(5):E917–24.PubMedGoogle Scholar
  25. 25.
    Naja Z, Lonnqvist PA. Somatic paravertebral nerve blockade. Incidence of failed block and complications. Anaesthesia. 2001;56(12):1184–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Burlacu CL, Buggy DJ. Coexisting harlequin and Horner syndromes after high thoracic paravertebral anaesthesia. Br J Anaesth. 2005;95(6):822–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Lenters TR, Davies J, Matsen FA 3rd. The types and severity of complications associated with interscalene brachial plexus block anesthesia: local and national evidence. J Shoulder Elb Surg. 2007;16(4):379–87.CrossRefGoogle Scholar
  28. 28.
    Candido KD. Brachial plexus blocks: techniques above the clavicle. In: Benzon HT, editor. Essentials of pain medicine and regional anesthesia. 2nd ed. Philadelphia, PA: Elsevier; 2005. p. 607–21.CrossRefGoogle Scholar
  29. 29.
    Candido KD. Yaghmour E. Brachial plexus blocks: techniques below the clavicle. In: Benzon H, editor. Essentials of pain medicine and regional anesthesia. 2nd ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2005. p. 622–35.CrossRefGoogle Scholar
  30. 30.
    Mercadante S, Klepstad P, Kurita GP, Sjogren P, Giarratano A, European Palliative Care Research C. Sympathetic blocks for visceral cancer pain management: a systematic review and EAPC recommendations. Crit Rev Oncol Hematol. 2015;96(3):577–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagels W, Pease N, Bekkering G, Cools F, Dobbels P. Celiac plexus neurolysis for abdominal cancer pain: a systematic review. Pain Med. 2013;14(8):1140–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaufman M, Singh G, Das S, Concha-Parra R, Erber J, Micames C, et al. Efficacy of endoscopic ultrasound-guided celiac plexus block and celiac plexus neurolysis for managing abdominal pain associated with chronic pancreatitis and pancreatic cancer. J Clin Gastroenterol. 2010;44(2):127–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Staats PS, Hekmat H, Sauter P, Lillemoe K. The effects of alcohol celiac plexus block, pain, and mood on longevity in patients with unresectable pancreatic cancer: a double-blind, randomized, placebo-controlled study. Pain Med. 2001;2(1):28–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Wong GY, Schroeder DR, Carns PE, Wilson JL, Martin DP, Kinney MO, et al. Effect of neurolytic celiac plexus block on pain relief, quality of life, and survival in patients with unresectable pancreatic cancer: a randomized controlled trial. JAMA. 2004;291(9):1092–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Erdek MA, Halpert DE, Gonzalez Fernandez M, Cohen SP. Assessment of celiac plexus block and neurolysis outcomes and technique in the management of refractory visceral cancer pain. Pain Med. 2010;11(1):92–100.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhong W, Yu Z, Zeng JX, Lin Y, Yu T, Min XH, et al. Celiac plexus block for treatment of pain associated with pancreatic cancer: a meta-analysis. Pain Pract. 2014;14(1):43–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Wyse JM, Carone M, Paquin SC, Usatii M, Sahai AV. Randomized, double-blind, controlled trial of early endoscopic ultrasound-guided celiac plexus neurolysis to prevent pain progression in patients with newly diagnosed, painful, inoperable pancreatic cancer. J Clin Oncol. 2011;29(26):3541–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Arcidiacono PG, Calori G, Carrara S, McNicol ED, Testoni PA. Celiac plexus block for pancreatic cancer pain in adults. Cochrane Database Syst Rev. 2011;3:CD007519.Google Scholar
  39. 39.
    de Oliveira R. Dos Reis MP, Prado WA. The effects of early or late neurolytic sympathetic plexus block on the management of abdominal or pelvic cancer pain. Pain. 2004;110(1–2):400–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Mishra S, Bhatnagar S, Rana SP, Khurana D, Thulkar S. Efficacy of the anterior ultrasound-guided superior hypogastric plexus neurolysis in pelvic cancer pain in advanced gynecological cancer patients. Pain Med. 2013;14(6):837–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Plancarte R, de Leon-Casasola OA, El-Helaly M, Allende S, Lema MJ. Neurolytic superior hypogastric plexus block for chronic pelvic pain associated with cancer. Reg Anesth. 1997;22(6):562–8.PubMedGoogle Scholar
  42. 42.
    Zechlinski JJ, Hieb RA. Lumbar sympathetic Neurolysis: how to and when to use? Tech Vasc Interv Radiol. 2016;19(2):163–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Gulati A, Khelemsky Y, Loh J, Puttanniah V, Malhotra V, Cubert K. The use of lumbar sympathetic blockade at L4 for management of malignancy-related bladder spasms. Pain Physician. 2011;14(3):305–10.PubMedGoogle Scholar
  44. 44.
    Woo JH, Park HS, Kim SC, Kim YH. The effect of lumbar sympathetic ganglion block on gynecologic cancer-related lymphedema. Pain Physician. 2013;16(4):345–52.PubMedGoogle Scholar
  45. 45.
    Toshniwal GR, Dureja GP, Prashanth SM. Transsacrococcygeal approach to ganglion impar block for management of chronic perineal pain: a prospective observational study. Pain Physician. 2007;10(5):661–6.PubMedGoogle Scholar
  46. 46.
    Candido KD. Neurolytic blocks. In: Diwan S, editor. Atlas of Pain Medicine Procedures: MCGraw-Hill Professional; 2014.Google Scholar
  47. 47.
    Sindt JE, Brogan SE. Interventional treatments of cancer pain. Anesthesiol Clin. 2016;34(2):317–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Candido K, Stevens RA. Intrathecal neurolytic blocks for the relief of cancer pain. Best Pract Res Clin Anaesthesiol. 2003;17(3):407–28.PubMedCrossRefGoogle Scholar
  49. 49.
    Candido KD, Philip CN, Ghaly RF, Knezevic NN. Transforaminal 5% phenol neurolysis for the treatment of intractable cancer pain. Anesth Analg. 2010;110(1):216–9.PubMedCrossRefGoogle Scholar
  50. 50.
    De Pinto M, Naidu RK. Peripheral and neuraxial chemical neurolysis for the management of intractable lower extremity pain in a patient with terminal cancer. Pain Physician. 2015;18(4):E651–6.PubMedGoogle Scholar
  51. 51.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Shealy CN, Taslitz N, Mortimer JT, Becker DP. Electrical inhibition of pain: experimental evaluation. Anesth Analg. 1967;46(3):299-305.PubMedCrossRefGoogle Scholar
  53. 53.
    Shealy CN, Mortimer JT, Hagfors NR. Dorsal column electroanalgesia. J Neurosurg. 1970;32(5):560–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Frey ME, Manchikanti L, Benyamin RM, Schultz DM, Smith HS, Cohen SP. Spinal cord stimulation for patients with failed back surgery syndrome: a systematic review. Pain Physician. 2009;12(2):379–97.PubMedGoogle Scholar
  55. 55.
    Grabow TS, Tella PK, Raja SN. Spinal cord stimulation for complex regional pain syndrome: an evidence-based medicine review of the literature. Clin J Pain. 2003;19(6):371–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Simpson EL, Duenas A, Holmes MW, Papaioannou D, Chilcott J. Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation. Health Technol Assess. 2009;13(17):iii–x.CrossRefGoogle Scholar
  57. 57.
    Viswanathan A, Phan PC, Burton AW. Use of spinal cord stimulation in the treatment of phantom limb pain: case series and review of the literature. Pain Pract. 2010;10(5):479–84.PubMedCrossRefGoogle Scholar
  58. 58.
    Harke H, Gretenkort P, Ladleif HU, Koester P, Rahman S. Spinal cord stimulation in postherpetic neuralgia and in acute herpes zoster pain. Anesth Analg. 2002;94(3):694–700.PubMedCrossRefGoogle Scholar
  59. 59.
    Ceballos A, Cabezudo L, Bovaira M, Fenollosa P, Moro B. Spinal cord stimulation: a possible therapeutic alternative for chronic mesenteric ischaemia. Pain. 2000;87(1):99–101.PubMedCrossRefGoogle Scholar
  60. 60.
    Taylor RS, De Vries J, Buchser E, Dejongste MJ. Spinal cord stimulation in the treatment of refractory angina: systematic review and meta-analysis of randomised controlled trials. BMC Cardiovasc Disord. 2009;9(13)Google Scholar
  61. 61.
    Knezevic NN, Candido KD, Rana S, Knezevic I. The use of spinal cord Neuromodulation in the management of HIV-related polyneuropathy. Pain Physician. 2015;18(4):E643–50.PubMedGoogle Scholar
  62. 62.
    Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation appropriateness consensus committee. Neuromodulation. 2014;17(6):515–50. discussion 50PubMedCrossRefGoogle Scholar
  63. 63.
    Mekhail NA, Mathews M, Nageeb F, Guirguis M, Mekhail MN, Cheng J. Retrospective review of 707 cases of spinal cord stimulation: indications and complications. Pain Pract. 2011;11(2):148–53.PubMedCrossRefGoogle Scholar
  64. 64.
    Cata JP, Cordella JV, Burton AW, Hassenbusch SJ, Weng HR, Dougherty PM. Spinal cord stimulation relieves chemotherapy-induced pain: a clinical case report. J Pain Symptom Manag. 2004;27(1):72–8.CrossRefGoogle Scholar
  65. 65.
    Abd-Elsayed A, Schiavoni N, Sachdeva H. Efficacy of spinal cord stimulators in treating peripheral neuropathy: a case series. J Clin Anesth. 2016;28:74–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Wininger KL, Bester ML, Deshpande KK. Spinal cord stimulation to treat postthoracotomy neuralgia: non-small-cell lung cancer: a case report. Pain Manag Nurs. 2012;13(1):52–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Yakovlev AE, Resch BE, Karasev SA. Treatment of cancer-related chest wall pain using spinal cord stimulation. Am J Hosp Palliat Care. 2010;27(8):552–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Yakovlev AE, Resch BE. Spinal cord stimulation for cancer-related low back pain. Am J Hosp Palliat Care. 2012;29(2):93–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Nouri KH, Brish EL. Spinal cord stimulation for testicular pain. Pain Med. 2011;12(9):1435–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Yakovlev AE, Ellias Y. Spinal cord stimulation as a treatment option for intractable neuropathic cancer pain. Clin Med Res. 2008;6(3–4):103–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Peng L, Min S, Zejun Z, Wei K, Bennett MI. Spinal cord stimulation for cancer-related pain in adults. Cochrane Database Syst Rev. 2015;6:CD009389.Google Scholar
  72. 72.
    Pope JE, Deer TR, Bruel BM, Falowski S. Clinical uses of Intrathecal therapy and its placement in the pain care algorithm. Pain Pract. 2016;16:1092.CrossRefGoogle Scholar
  73. 73.
    Rauck RL, Cherry D, Boyer MF, Kosek P, Dunn J, Alo K. Long-term intrathecal opioid therapy with a patient-activated, implanted delivery system for the treatment of refractory cancer pain. J Pain. 2003;4(8):441–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Smith TJ, Staats PS, Deer T, Stearns LJ, Rauck RL, Boortz-Marx RL, et al. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: impact on pain, drug-related toxicity, and survival. J Clin Oncol. 2002;20(19):4040–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Zheng S, He L, Yang X, Li X, Yang Z. Evaluation of intrathecal drug delivery system for intractable pain in advanced malignancies: a prospective cohort study. Medicine (Baltimore). 2017;96(11):e6354.CrossRefGoogle Scholar
  76. 76.
    Siddall PJ, Molloy AR, Walker S, Mather LE, Rutkowski SB, Cousins MJ. The efficacy of intrathecal morphine and clonidine in the treatment of pain after spinal cord injury. Anesth Analg. 2000;91(6):1493–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Deer TR, Smith HS, Burton AW, Pope JE, Doleys DM, Levy RM, et al. Comprehensive consensus based guidelines on intrathecal drug delivery systems in the treatment of pain caused by cancer pain. Pain Physician. 2011;14(3):E283–312.PubMedGoogle Scholar
  78. 78.
    Wibmer C, Leithner A, Hofmann G, Clar H, Kapitan M, Berghold A, et al. Survival analysis of 254 patients after manifestation of spinal metastases: evaluation of seven preoperative scoring systems. Spine (Phila Pa 1976). 2011;36(23):1977–86.CrossRefGoogle Scholar
  79. 79.
    Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33(2):166–8.PubMedGoogle Scholar
  80. 80.
    Cai S, Kong X, Yan C, Liu Y, Zhou X, Qiu G. Successful treatment of metastatic pheochromocytoma in the spine with cement augmentation. Medicine (Baltimore). 2017;96(4):e5892.CrossRefGoogle Scholar
  81. 81.
    Bao L, Jia P, Li J, Chen H, Dong Y, Feng F, et al. Percutaneous vertebroplasty relieves pain in cervical spine metastases. Pain Res Manag. 2017;2017:3926318.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Maugeri R, Graziano F, Basile L, Guli C, Giugno A, Giammalva GR, et al. Reconstruction of vertebral body after radiofrequency ablation and augmentation in dorsolumbar metastatic vertebral fracture: analysis of clinical and radiological outcome in a clinical series of 18 patients. Acta Neurochir Suppl. 2017;124:81–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Health Quality O. Vertebral augmentation involving Vertebroplasty or Kyphoplasty for cancer-related vertebral compression fractures: a systematic review. Ont Health Technol Assess Ser. 2016;16(11):1–202.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kenneth D. Candido
    • 1
    • 2
  • Teresa M. Kusper
    • 1
  1. 1.Department of AnesthesiologyAdvocate Illinois Masonic Medical CenterChicagoUSA
  2. 2.Departments of Surgery and AnesthesiologyUniversity of Illinois College of MedicineChicagoUSA

Personalised recommendations