Advertisement

The Role of Biofilms in Upper Respiratory Tract Infections

  • Sara Torretta
  • Lorenzo Pignataro
Chapter

Abstract

It has been estimated that more than 90% of bacteria live in biofilms. Biofilms represent a serious clinical concern because they are highly resistant to immune activity and conventional antibiotic treatments. Bacterial biofilms appear to be involved in the pathogenesis of various upper respiratory tract infections, including recurrent acute tonsillitis, chronic adenoiditis, chronic or recurrent middle ear inflammation, and chronic rhinosinusitis. In this chapter, we review new insights into biofilm-related upper respiratory tract infections and discuss possible therapies.

Keywords

Biofilm Upper respiratory tract Infections Otitis Tonsillitis Rhinosinusitis 

References

  1. 1.
    Potera C. Forging a link between biofilms and disease. Science. 1999;283(5409):1837, 1839.CrossRefPubMedGoogle Scholar
  2. 2.
    Alem MA, Douglas LJ. Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother. 2004;48(1):41–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jurcisek JA, Bakaletz LO. Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J Bacteriol. 2007;189(10):3868–75.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Stoodley P, Wefel J, Gieseke A, Debeer D, von Ohle C. Biofilm plaque and hydrodynamic effects on mass transfer, fluoride delivery and caries. J Am Dent Assoc. 2008;139(9):1182–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2005;49(6):2467–73.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lambe DW Jr, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW. Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Orthop Relat Res. 1991;(266):285–94.Google Scholar
  10. 10.
    Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Psaltis AJ, Bruhn MA, Ooi EH, Tan LW, Wormald PJ. Nasal mucosa expression of lactoferrin in patients with chronic rhinosinusitis. Laryngoscope. 2007;117(11):2030–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol. 2007;52(11):1048–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Hannig C, Follo M, Hellwig E, Al-Ahmad A. Visualization of adherent micro-organisms using different techniques. J Med Microbiol. 2010;59(Pt 1):1–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Post JC, Hiller NL, Nistico L, Stoodley P, Ehrlich GD. The role of biofilms in otolaryngologic infections: update 2007. Curr Opin Otolaryngol Head Neck Surg. 2007;15(5):347–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57:677–701.CrossRefPubMedGoogle Scholar
  17. 17.
    Nazzari E, Torretta S, Pignataro L, Marchisio P, Esposito S. Role of biofilm in children with recurrent upper respiratory tract infections. Eur J Clin Microbiol Infect Dis. 2015;34(3):421–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Chole RA, Faddis BT. Anatomical evidence of microbial biofilms in tonsillar tissues: a possible mechanism to explain chronicity. Arch Otolaryngol Head Neck Surg. 2003;129(6):634–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Galli J, Calò L, Ardito F, Imperiali M, Bassotti E, Fadda G, et al. Biofilm formation by Haemophilus influenzae isolated from adeno-tonsil tissue samples, and its role in recurrent adenotonsillitis. Acta Otorhinolaryngol Ital. 2007;27(3):134–8.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Al-Mazrou KA, Al-Khattaf AS. Adherent biofilms in adenotonsillar diseases in children. Arch Otolaryngol Head Neck Surg. 2008;134(1):20–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Torretta S, Drago L, Marchisio P, Cappadona M, Rinaldi V, Nazzari E, et al. Recurrences in chronic tonsillitis sustained by tonsillar biofilm-producing bacteria in children. Relationship with the grade of tonsillar hyperplasy. Int J Pediatr Otorhinolaryngol. 2013;77(2):200–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Stoodley P, Debeer D, Longwell M, Nistico L, Hall-Stoodley L, Wenig B, et al. Tonsillolith: not just a stone but a living biofilm. Otolaryngol Head Neck Surg. 2009;141(3):316–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Neville BW, Damm DD, Allen CM, Bouquot JE. Oral and maxillofacial pathology. Philadelphia, PA: WB Saunders; 2002.Google Scholar
  24. 24.
    Diaz RR, Picciafuoco S, Paraje MG, Villegas NA, Miranda JA, Albesa I, et al. Relevance of biofilms in pediatric tonsillar disease. Eur J Clin Microbiol Infect Dis. 2011;30(12):1503–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Woo JH, Kim ST, Kang IG, Lee JH, Cha HE, Kim DY. Comparison of tonsillar biofilms between patients with recurrent tonsillitis and a control group. Acta Otolaryngol. 2012;132(10):1115–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Starner TD, Zhang N, Kim G, Apicella MA, McCray PB Jr. Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med. 2006;174(2):213–20.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Torretta S, Marchisio P, Drago L, Capaccio P, Baggi E, Pignataro L. The presence of biofilm-producing bacteria on tonsils is associated with increased exhaled nitric oxide levels: preliminary data in children who experience recurrent exacerbations of chronic tonsillitis. J Laryngol Otol. 2015;129(3):267–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Kasperska-Zajac A, Czecior E, Namyslowski G. Effect of tonsillectomy on the level of exhaled nitric oxide (NO) in patients with recurrent tonsillitis. Respir Med. 2010;104(11):1757–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Torretta S, Marchisio P, Esposito S, Garavello W, Cappadona M, Clemente IA, et al. Exhaled nitric oxide levels in children with chronic adenotonsillar disease. Int J Immunopathol Pharmacol. 2011;24(2):471–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009;191(23):7333–42.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Falsetta ML, McEwan AG, Jennings MP, Apicella MA. Anaerobic metabolism occurs in the substratum of gonococcal biofilms and may be sustained in part by nitric oxide. Infect Immun. 2010;78(5):2320–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bulut F, Meric F, Yorgancilar E, Nergiz Y, Akkus M, Nergiz S, et al. Effects of N-acetyl-cysteine and acetylsalicylic acid on the tonsil bacterial biofilm tissues by light and electron microscopy. Eur Rev Med Pharmacol Sci. 2014;18(23):3720–5.PubMedGoogle Scholar
  33. 33.
    Drago L, Cappelletti L, De Vecchi E, Pignataro L, Torretta S, Mattina R. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections. APMIS. 2014;122(10):1013–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Torretta S, Drago L, Marchisio P, Gaffuri M, Clemente IA, Pignataro L. Topographic distribution of biofilm-producing bacteria in adenoid subsites of children with chronic or recurrent middle ear infections. Ann Otol Rhinol Laryngol. 2013;122(2):109–13.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Torretta S, Marchisio P, Drago L, Baggi E, De Vecchi E, Garavello W, et al. Nasopharyngeal biofilm-producing otopathogens in children with nonsevere recurrent acute otitis media. Otolaryngol Head Neck Surg. 2012;146(6):991–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Galli J, Calò L, Giuliani M, Sergi B, Lucidi D, Meucci D, et al. Biofilm’s role in chronic cholesteatomatous otitis media: a pilot study. Otolaryngol Head Neck Surg. 2016;154(5):914–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wessman M, Bjarnsholt T, Eickhardt-Sørensen SR, Johansen HK, Homøe P. Mucosal biofilm detection in chronic otitis media: a study of middle ear biopsies from Greenlandic patients. Eur Arch Otorhinolaryngol. 2015;272(5):1079–85.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bakaletz LO. Bacterial biofilms in the upper airway - evidence for role in pathology and implications for treatment of otitis media. Paediatr Respir Rev. 2012;13(3):154–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Saafan ME, Ibrahim WS, Tomoum MO. Role of adenoid biofilm in chronic otitis media with effusion in children. Eur Arch Otorhinolaryngol. 2013;270(9):2417–25.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zuliani G, Carlisle M, Duberstein A, Haupert M, Syamal M, Berk R, et al. Biofilm density in the pediatric nasopharynx: recurrent acute otitis media versus obstructive sleep apnea. Ann Otol Rhinol Laryngol. 2009;118(7):519–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD. Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA. 1998;279(4):296–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296(2):202–11.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Daniel M, Imtiaz-Umer S, Fergie N, Birchall JP, Bayston R. Bacterial involvement in otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2012;76(10):1416–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Saylam G, Tatar EC, Tatar I, Ozdek A, Korkmaz H. Association of adenoid surface biofilm formation and chronic otitis media with effusion. Arch Otolaryngol Head Neck Surg. 2010;136(6):550–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Hoa M, Syamal M, Schaeffer MA, Sachdeva L, Berk R, Coticchia J. Biofilms and chronic otitis media: an initial exploration into the role of biofilms in the pathogenesis of chronic otitis media. Am J Otolaryngol. 2010;31(4):241–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Gu X, Keyoumu Y, Long L, Zhang H. Detection of bacterial biofilms in different types of chronic otitis media. Eur Arch Otorhinolaryngol. 2014;271(11):2877–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Homøe P, Bjarnsholt T, Wessman M, Sørensen HC, Johansen HK. Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media. Eur Arch Otorhinolaryngol. 2009;266(10):1533–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Saunders J, Murray M, Alleman A. Biofilms in chronic suppurative otitis media and cholesteatoma: scanning electron microscopy findings. Am J Otolaryngol. 2011;32(1):32–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Moriyama S, Hotomi M, Shimada J, Billal DS, Fujihara K, Yamanaka N. Formation of biofilm by Haemophilus influenzae isolated from pediatric intractable otitis media. Auris Nasus Larynx. 2009;36(5):525–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Mizrahi A, Cohen R, Varon E, Bonacorsi S, Bechet S, Poyart C, et al. Non typable-Haemophilus influenzae biofilm formation and acute otitis media. BMC Infect Dis. 2014;14:400.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tatar EÇ, Tatar I, Ocal B, Korkmaz H, Saylam G, Ozdek A, et al. Prevalence of biofilms and their response to medical treatment in chronic rhinosinusitis without polyps. Otolaryngol Head Neck Surg. 2012;146(4):669–75.CrossRefPubMedGoogle Scholar
  52. 52.
    Danielsen KA, Eskeland O, Fridrich-Aas K, Orszagh VC, Bachmann-Harildstad G, et al. Bacterial biofilms in patients with chronic rhinosinusitis: a confocal scanning laser microscopy study. Rhinology. 2014;52(2):150–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Ragab A, Essa N, El-Raghy N, Zahran W, El Borolsy A. Evaluation of bacterial adherence and biofilm arrangements as new targets in treatment of chronic rhinosinusitis. Eur Arch Otorhinolaryngol. 2012;269(2):537–44.CrossRefPubMedGoogle Scholar
  54. 54.
    Chen HH, Liu X, Ni C, Lu YP, Xiong GY, Lu YY, et al. Bacterial biofilms in chronic rhinosinusitis and their relationship with inflammation severity. Auris Nasus Larynx. 2012;39(2):169–74.CrossRefPubMedGoogle Scholar
  55. 55.
    Li H, Wang D, Sun X, Hu L, Yu H, Wang J. Relationship between bacterial biofilm and clinical features of patients with chronic rhinosinusitis. Eur Arch Otorhinolaryngol. 2012;269(1):155–63.CrossRefPubMedGoogle Scholar
  56. 56.
    Arild Danielsen K, Eskeland Ø, Fridrich-Aas K, Cecilie Orszagh V, Bachmann-Harildstad G, Burum-Auensen E. Bacterial biofilms in chronic rhinosinusitis; distribution and prevalence. Acta Otolaryngol. 2016;136(1):109–12.CrossRefPubMedGoogle Scholar
  57. 57.
    Coticchia J, Zuliani G, Coleman C, Carron M, Gurrola J II, Haupert M, et al. Biofilm surface area in the pediatric nasopharynx: Chronic rhinosinusitis vs obstructive sleep apnea. Arch Otolaryngol Head Neck Surg. 2007;133(2):110–4.CrossRefPubMedGoogle Scholar
  58. 58.
    Zuliani G, Carron M, Gurrola J, Coleman C, Haupert M, Berk R, et al. Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol. 2006;70(9):1613–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Dlugaszewska J, Leszczynska M, Lenkowski M, Tatarska A, Pastusiak T, Szyfter W. The pathophysiological role of bacterial biofilms in chronic sinusitis. Eur Arch Otorhinolaryngol. 2016;273(8):1989–94.CrossRefPubMedGoogle Scholar
  60. 60.
    Bezerra TF, Padua FG, Gebrim EM, Saldiva PH, Voegels RL. Biofilms in chronic rhinosinusitis with nasal polyps. Otolaryngol Head Neck Surg. 2011;144(4):612–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Mladina R, Skitarelić N, Musić S, Ristić M. A biofilm exists on healthy mucosa of the paranasal sinuses: a prospectively performed, blinded, scanning electron microscope study. Clin Otolaryngol. 2010;35(2):104–10.CrossRefPubMedGoogle Scholar
  62. 62.
    Sanderson AR, Leid JG, Hunsaker D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope. 2006;116(7):1121–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Prince AA, Steiger JD, Khalid AN, Dogrhamji L, Reger C, Eau Claire S, et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol. 2008;22(3):239–45.CrossRefPubMedGoogle Scholar
  64. 64.
    Healy DY, Leid JG, Sanderson AR, Hunsaker DH. Biofilms with fungi in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2008;138(5):641–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Boase S, Valentine R, Singhal D, Tan LW, Wormald PJ. A sheep model to investigate the role of fungal biofilms in sinusitis: fungal and bacterial synergy. Int Forum Allergy Rhinol. 2011;1(5):340–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Singhal D, Psaltis AJ, Foreman A, Wormald PJ. The impact of biofilms on outcomes after endoscopic sinus surgery. Am J Rhinol Allergy. 2010;24(3):169–74.CrossRefPubMedGoogle Scholar
  67. 67.
    Bendouah Z, Barbeau J, Hamad WA, Desrosiers M. Biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol Head Neck Surg. 2006;134(6):991–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Arjomandi H, Gilde J, Zhu S, Delaney S, Hochstim C, Mazhar K, et al. Relationship of eosinophils and plasma cells to biofilm in chronic rhinosinusitis. Am J Rhinol Allergy. 2013;27(4):e85–90.CrossRefPubMedGoogle Scholar
  69. 69.
    Foreman A, Holtappels G, Psaltis AJ, Jervis-Bardy J, Field J, Wormald PJ, et al. Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Allergy. 2011;66(11):1449–56.CrossRefPubMedGoogle Scholar
  70. 70.
    Ferguson BJ, Stolz DB. Demonstration of biofilm in human bacterial chronic rhinosinusitis. Am J Rhinol. 2005;19(5):452–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Mladina R, Poje G, Vuković K, Ristić M, Musić S. Biofilm in nasal polyps. Rhinology. 2008;46(4):302–7.PubMedGoogle Scholar
  72. 72.
    Zernotti ME, Angel Villegas N, Roques Revol M, Baena-Cagnani CE, Arce Miranda JE, Paredes ME, et al. Evidence of bacterial biofilms in nasal polyposis. J Investig Allergol Clin Immunol. 2010;20(5):380–5.PubMedGoogle Scholar
  73. 73.
    Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother. 1996;40(11):2517–22.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Mai-Prochnow A, Lucas-Elio P, Egan S, Thomas T, Webb JS, Sanchez-Amat A, et al. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. J Bacteriol. 2008;190(15):5493–501.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, et al. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol. 2003;171(8):4329–39.CrossRefPubMedGoogle Scholar
  76. 76.
    De Beer D, Srinivasan R, Stewart PS. Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol. 1994;60(12):4339–44.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Desrosiers M, Bendouah Z, Barbeau J. Effectiveness of topical antibiotics on Staphylococcus aureus biofilm in vitro. Am J Rhinol. 2007;21(2):149–53.CrossRefPubMedGoogle Scholar
  78. 78.
    Solares CA, Batra PS, Hall GS, Citardi MJ. Treatment of chronic rhinosinusitis exacerbations due to methicillin-resistant Staphylococcus aureus with mupirocin irrigations. Am J Otolaryngol. 2006;27(3):161–5.CrossRefPubMedGoogle Scholar
  79. 79.
    Oxley KS, Thomas JG, Ramadan HH. Effect of ototopical medications on tympanostomy tube biofilms. Laryngoscope. 2007;117(10):1819–24.CrossRefPubMedGoogle Scholar
  80. 80.
    Ha KR, Psaltis AJ, Butcher AR, Wormald PJ, Tan LW. In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope. 2008;118(3):535–40.CrossRefPubMedGoogle Scholar
  81. 81.
    Kim SG, Yoon YH, Choi JW, Rha KS, Park YH. Effect of furanone on experimentally induced Pseudomonas aeruginosa biofilm formation: in vitro study. Int J Pediatr Otorhinolaryngol. 2012;76(11):1575–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Singhal D, Jekle A, Debabov D, Wang L, Khosrovi B, Anderson M, et al. Efficacy of NVC-422 against Staphylococcus aureus biofilms in a sheep biofilm model of sinusitis. Int Forum Allergy Rhinol. 2012;2(4):309–15.CrossRefPubMedGoogle Scholar
  83. 83.
    Karosi T, Sziklai I, Csomor P. Low-frequency ultrasound for biofilm disruption in chronic rhinosinusitis with nasal polyposis: in vitro pilot study. Laryngoscope. 2013;123(1):17–23.CrossRefPubMedGoogle Scholar
  84. 84.
    Chiu AG, Palmer JN, Woodworth BA, Doghramji L, Cohen MB, Prince A, et al. Baby shampoo nasal irrigations for the symptomatic post-functional endoscopic sinus surgery patient. Am J Rhinol. 2008;22(1):34–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Valentine R, Jervis-Bardy J, Psaltis A, Tan LW, Wormald PJ. Efficacy of using a hydrodebrider and of citric acid/zwitterionic surfactant on a Staphylococcus aureus bacterial biofilm in the sheep model of rhinosinusitis. Am J Rhinol Allergy. 2011;25(5):323–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Free RH, Van der Mei HC, Elving GJ, Van Weissenbruch R, Albers FW, Busscher HJ. Influence of the Provox Flush, blowing and imitated coughing on voice prosthetic biofilms in vitro. Acta Otolaryngol. 2003;123(4):547–51.CrossRefPubMedGoogle Scholar
  87. 87.
    Krespi YP, Kizhner V, Nistico L, Hall-Stoodley L, Stoodley P. Laser disruption and killing of methicillin-resistant Staphylococcus aureus biofilms. Am J Otolaryngol. 2011;32(3):198–202.CrossRefPubMedGoogle Scholar
  88. 88.
    Kilty SJ, Duval M, Chan FT, Ferris W, Slinger R. Methylglyoxal: (active agent of manuka honey) in vitro activity against bacterial biofilms. Int Forum Allergy Rhinol. 2011;1(5):348–50.CrossRefPubMedGoogle Scholar
  89. 89.
    Lee VS, Humphreys IM, Purcell PL, Davis GE. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis. A randomized controlled-trial. Int Forum Allergy Rhinol. 2016;7:365.CrossRefPubMedGoogle Scholar
  90. 90.
    Schwandt LQ, van Weissenbruch R, van der Mei HC, Busscher HJ, Albers FW. Effect of dairy products on the lifetime of Provox2 voice prosthesis in vitro and in vivo. Head Neck. 2005;27(6):471–7.CrossRefPubMedGoogle Scholar
  91. 91.
    van der Mei HC, Free RH, Elving GJ, Van Weissenbruch R, Albers FW, Busscher HJ. Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J Med Microbiol. 2000;49(8):713–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Norizan SN, Yin WF, Chan KG. Caffeine as a potential quorum sensing inhibitor. Sensor (Basel). 2013;13(4):5117–29.CrossRefGoogle Scholar
  93. 93.
    Mouchrek Junior JC, Nunes LH, Arruda CS, Rizzi Cde C, Mouchrek AQ, Tavarez RR, Tonetto MR, Bandeca MC, Maia Filho EM. Effectiveness of oral antiseptics on tooth biofilm: a study in vivo. J Contempt Dent Pract. 2015;16(8):674–8.CrossRefGoogle Scholar
  94. 94.
    Cross JL, Ramadan HH, Thomas JG. The impact of cationic channel blocker (furosemide) on Pseudomonas Aeruginosa PAO1 biofilm. Otolaryngol Head Neck Surg. 2007;137(1):21–6.CrossRefPubMedGoogle Scholar
  95. 95.
    Wang EW, Agostini G, Olomu O, Runco D, Jung JY, Chole RA. Gentian violet and ferrum ammonium citrate disrupt Pseudomonas aeruginosas biofilm. Laryngoscope. 2008;118(11):2050–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Macchi A, Ardito F, Marchese A, Schito GC, Fadda G. Efficacy of N-acetyl-cysteine in combination with thiamphenicol in sequential (intramuscular/aerosol) therapy of upper respiratory tract infections even when sustained by bacterial biofilms. J Chemother. 2006;18(5):507–13.CrossRefPubMedGoogle Scholar
  97. 97.
    Le T, Psaltis A, Tan LW, Wormald PJ. The efficacy of topical antibiofilm agents in a sheep model of rhinosinusitis. Am J Rhinol. 2008;22(6):560–7.CrossRefPubMedGoogle Scholar
  98. 98.
    Nazik H, Penner JC, Ferreira JA, Haagensen JA, Cohen K, Spormann AM, Martinez M, Chen V, Hsu JL, Clemons KV, Stevens DA. Effects of iron chelators on the formation and development of aspergillus fumigatus biofilm. Antimicrob Agents Chemother. 2015;59(10):6514–20.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gökçen A, Vilcinskas A, Wiesner J, Mukkur T. In vitro antimicrobial efficacy of tobramycin against staphylococcus aureus biofilms in combination with or without DNase I and/or dispersin B: a preliminary investigation. Microb Drug Resist. 2017;23:384.CrossRefPubMedGoogle Scholar
  100. 100.
    Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188(21):7344–53.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Otolaryngological Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly

Personalised recommendations