FABIOLA: Towards the Resolution of Constraint Optimization Problems in Big Data Environment

  • Luisa Parody
  • Ángel Jesús Varela Vaca
  • Mª Teresa Gómez López
  • Rafael M. Gasca
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 26)

Abstract

The optimization problems can be found in several examples within companies, such as the minimization of the production costs, the faults produced, or the maximization of customer loyalty. The resolution of them is a challenge that entails an extra effort. In addition, many of today’s enterprises are encountering the Big Data problems added to these optimization problems. Unfortunately, to tackle this challenge by medium and small companies is extremely difficult or even impossible. In this paper, we propose a framework that isolates companies from how the optimization problems are solved. More specifically, we solve optimization problems where the data is heterogeneous, distributed and of a huge volume. FABIOLA (FAst BIg cOstraint LAb) framework enables to describe the distributed and structured data used in optimization problems that can be parallelized (the variables are not shared between the various optimization problems), and obtains a solution using Constraint Programming Techniques.

Keywords

Big data Optimization problem Constraint programming Data structure 

Notes

Acknowledgements

This work has been partially funded by the Ministry of Science and Technology of Spain (TIN2015-63502-C3-2-R) and the European Regional Development Fund (ERDF/FEDER).

References

  1. 1.
    Chattopadhyay, B., Lin, L., Liu, W., Mittal, S., Aragonda, P., Lychagina, V., Kwon, Y., Wong, M.: Tenzing a SQL implementation on the mapreduce framework. In: Proceedings of VLDB, pp. 1318–1327 (2011)Google Scholar
  2. 2.
    Apache Hadoop. http://wiki.apache.org/hadoop. Accessed 15 Apr 2017
  3. 3.
    White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition (2009)Google Scholar
  4. 4.
    Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)CrossRefGoogle Scholar
  5. 5.
    Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009)CrossRefGoogle Scholar
  6. 6.
    Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big data. Proc. VLDB Endow. 5(12), 2032–2033 (2012)CrossRefGoogle Scholar
  7. 7.
    Nasser, T., Tariq, R.S.: Big data challenges. Comput. Eng. Inform. Technol. 4(3), 1–10 (2015)Google Scholar
  8. 8.
    Olston, C., Reed, B., Silberstein, A., Srivastava, U.: Automatic optimization of parallel dataflow programs. In: USENIX 2008 Annual Technical Conference, ATC’08, pp. 267–273. Berkeley, CA, USA (2008)Google Scholar
  9. 9.
    IBM-ILOG CPLEX Studio. http://www-03.ibm.com/software/products/es/ibmilogcpleoptistud. Accessed 15 Apr 2017
  10. 10.
    Choco Solver. http://www.choco-solver.org/. Accessed 15 Apr 2017
  11. 11.
    O’Sullivan, B.: Opportunities and challenges for constraint programming. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI’12, pp. 2148–2152. AAAI Press (2012)Google Scholar
  12. 12.
    Freuder, E.F., O’Sullivan, B.: Grand challenges for constraint programming. Constraints 19(2), 150–162 (2014)CrossRefGoogle Scholar
  13. 13.
    Rossi, F., Saraswat, V.: Constraint programming languages for big data applicationsGoogle Scholar
  14. 14.
    Rossi, F., van Beek, P., Walsh, T. Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  15. 15.
    Ceballos, R., Gómez-López, M.T., Gasca, R.M., Del Valle Sevillano, C.: A compiled model for faults diagnosis based on different techniques. AI Commun. 20(1), 7–16 (2007)Google Scholar
  16. 16.
    Gómez-López, M.T., Ceballos, R., Gasca, R.M., Del Valle Sevillano, C.: Developing a labelled object-relational constraint database architecture for the projection operator. Data Knowl. Eng. 68(1), 146–172 (2009)Google Scholar
  17. 17.
    Gómez-López, M.T., Gasca, R.M.: Using constraint programming in selection operators for constraint databases. Expert Syst. Appl. 41(15), 6773–6785 (2014)Google Scholar
  18. 18.
    Gómez-López, M.T., Gasca, R.M.: Object Relational Constraint Databases for GIS. Encyclopedia of GIS 2017, pp. 1449–1457 (2017)Google Scholar
  19. 19.
    Amazon-Web Services. http://aws.amazon.com/whitepapers/. Accessed 15 Apr 2017
  20. 20.
    Gasca, R.M., Del Valle Sevillano, C., Gómez-López, M.T., Ceballos, R.: NMUS: structural analysis for improving the derivation of all muses in overconstrained numeric CSPs, pp. 160–169. CAEPIA 2007 (2007)Google Scholar
  21. 21.
    Gómez-López, M.T., Ceballos, R., Gasca, R.M., Del Valle Sevillano, C.: Applying constraint databases in the determination of potential minimal conflicts to polynomial model-based diagnosispp, pp. 75–89. CDB 2004 (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luisa Parody
    • 1
  • Ángel Jesús Varela Vaca
    • 1
  • Mª Teresa Gómez López
    • 1
  • Rafael M. Gasca
    • 1
  1. 1.Universidad de SevillaSevilleSpain

Personalised recommendations