Natural Hazards and Earth Observation

  • Wolfgang SulzerEmail author
Conference paper


Hazard always arises from the interplay of social and biological and physical systems; disasters are generated as much or more by human actions as by physical events and there is a proofed impact of global warming on natural disasters. In recent years, Remote Sensing technologies has been of considerable interest concerned with emergency services and disaster management. The objective of this paper is not to provide an overview of how Earth observation technologies can be used in the management of natural hazards in details and in case studies. The focus lies in the documentation of the requirements for the usage of Remote Sensing images within the topics of natural hazards and disaster management on different scales (from global to local aspects). Some examples of international operational mechanisms (Charter, Copernicus, ZKI), serving rapid mapping on Earth observation data will be pointed out.


  1. 1.
    Bayfield N (1996) Approaches to monitoring for nature conservation in Scotland. In: Umweltbundesamt (ed) Monitoring for nature conservation 22, Vienna, 23–27Google Scholar
  2. 2.
    Bello OM, Aina YA (2014) Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach. Procedia Soc Behav Sci 120:365–373. Scholar
  3. 3.
    Deutsches Zentrum für Luft- und Raumfahrt (DLR) (2017) Das Zentrum für satellitengestützte Kriseninformation (ZKI), Accessed: 2017-11-30
  4. 4.
    Dikau R, Pohl J (2011) Hazards: Naturgefahren und Naturrisiken. In: Gebhardt H, Glaser R, Radtke, U, Reuber P (eds) Geographie. Physische Geographie und Humangeographie. (Spektrum Akademischer Verlag) Heidelberg, pp 1114–1169Google Scholar
  5. 5.
    Eguchi RT, Huyck CK, Ghosh S, Adams BJ (2008) The application of remote sensing technologies for disaster management. In: Proceedings of the 14th world conference on earthquake engineering, 12–17 Oct, Beijing, China, p 17Google Scholar
  6. 6.
    European Space Agency (ESA) (2016) International charter space and major disasters. Available from: Accessed: 2017-11-30
  7. 7.
    European Commission: Copernicus Emergency Management Service. Available from: Accessed: 2017-11-30
  8. 8.
    Gähler M (2016) Remote sensing for natural or man-made disasters and environmental changes. In: Marghany M (ed) Environmental applications of remote sensing, pp 309–338. Scholar
  9. 9.
    Gens R, Van Genderen JL (1996) 9 SAR interferometry—issues, techniques, applications. Int J Remote Sens 17:1803–1835CrossRefGoogle Scholar
  10. 10.
    Glade T, Dikau R (2001) Gravitative Massenbewegungen—vom Naturereignis zur Naturkatastrophe. Petermanns Geogr Mitt 145(6):42–53Google Scholar
  11. 11.
    International Charter “Space & Major Disasters” (2016) 2016 annual report.
  12. 12.
    Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog Phys Geogr 33(2):183–207. Scholar
  13. 13.
    Kerle N (2013) Remote sensing of natural hazards and disasters. In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 837–847CrossRefGoogle Scholar
  14. 14.
    Krishnamoorthi N (2016) Role of remote sensing and GIS in natural-disaster management cycle. Imp J Interdiscip Res (IJIR) 2(3):144–154Google Scholar
  15. 15.
    Merified PM, Lamar DL (1975) Active and inactive faults in southern California viewed from Skylab, TM X-58168, vol 1, NASA, pp 779–797Google Scholar
  16. 16.
    Münchner R (2017) TOPICS GEO natural catastrophes 2016 Analyses, assessments, positions 2017 issue. Accessed: 2017-11-30
  17. 17.
    Oštir K, Veljanovski T, Podobnikar T, Stančič Z (2010) Application of satellite remote sensing in natural hazard management: the mount mangart landslide case study. J Int J Remote Sens 24(20):3983–4002. Scholar
  18. 18.
    Rib HT, Liang T (1978) Recognition and identification, in Landslides—analyses and control, In: Schuster RL, Krizek RJ (eds) National academy of sciences, Washington DC, pp 34–69Google Scholar
  19. 19.
    Seier G, Stangl J, St Schöttl, Sulzer W, Sass O (2017) UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria. Int J Remote Sens 38(8–10):2903–2920. Scholar
  20. 20.
    Seier G, Kellerer-Pirklbauer A, Wecht M, Hirschmann S, Kaufmann V, Lieb GK, Sulzer W (2017b) UAS-based change detection of the glacial and proglacial transition zone at pasterze glacier, Austria. Remote Sens 9(549). Scholar
  21. 21.
    Seier G, Sulzer W, Wecht M (2017c) Veränderungsdetektion eines Wildbaches mittels unbemanntem Luftfahrzeug. In: AGIT—Journal für Angewandte Geoinformatik 3, Herbert Wichmann Verlag, VDE VERLAG GMBH, Berlin Offenbach.
  22. 22.
    Titz A (2015) Naturgefahren und Naturrisiken im Nepal-Himalaya. Dissertation an der Justus–Liebig–Universität Gießen, Gießen, p 245Google Scholar
  23. 23.
    Van Westen C (2000) Remote sensing for natural disaster management. Int Arch Photogramm Remote Sens 23(B7):1609–1617Google Scholar
  24. 24.
    Van Westen C (2013) Remote sensing and GIS for natural hazards assessment and disaster risk management. In: Schroder JF, Bishop MP (eds) Treatise on geomorphology (Remote Sensing and GI Science in Geomorphology) 3, Academic Press, Elsevier, San Diego, pp 259–298Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geography and Regional SciencesUniversity of GrazGrazAustria

Personalised recommendations