Advertisement

Anesthesiology pp 403-411 | Cite as

Anesthesia for Hypertrophic Pyloric Stenosis

  • Trung Du
Chapter

Abstract

Hypertrophic pyloric stenosis (HPS) in an important differential diagnosis in the vomiting infant and remains the most common condition that requires surgical treatment in this age group.

Beyond the common issues that are faced by an anesthesia provider when delivering anesthesia to an infant, management of HPS requires an increased awareness of a number of potential pitfalls.

A review of the anatomy and physiology of the disease is presented, and the medical issues surrounding adequate correction of hydration status, and blood chemistry are discussed.

Safe anesthesia involves addressing aspiration risk at the start of the case and balancing reliable analgesia with the risk of apneas in the post-operative phase. The various benefits and drawbacks of the current induction strategies for general anesthesia, and the potential role for regional anesthesia are explored.

Pyloromyotomy has traditionally been done via the open Ramstedt procedure, but recently with the expansion of laparoscopic surgery, it is important to review the implications of pneumoperitoneum in the infant population.

Keywords

Hypertrophic pyloric stenosis Anesthesia Infants Rapid sequence intubation Metabolic alkalosis 

References

  1. 1.
    MacMahon B. The continuing enigma of pyloricstenosis of infancy: a review. Epidemiology. 2006;17:195–201.CrossRefPubMedGoogle Scholar
  2. 2.
    de Laffolie J, Turial S, Heckmann M, Zimmer KP, Schier F. Decline in infantile hypertrophic pyloric stenosis in Germany in 2000–2008. Pediatrics. 2012;129:e901–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Aboagye J, Goldstein SD, Salazar JH, et al. Age at presentation of common pediatric surgical conditions: re-examining dogma. J Pediatr Surg. 2014;49:995–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Piroutek MJ, Brown L, Thorp AW. Bilious vomiting does not rule out infantile hypertrophic pyloric stenosis. Clin Pediatr (Phila). 2012;51(3):214–8.  https://doi.org/10.1177/0009922811431159. Epub 2011 Dec 12.CrossRefGoogle Scholar
  5. 5.
    Glatsein M, Carbell G, Boddu SK. The changing clinical presentation of hypertrophic pyloric stenosis: the experience of a large, tertiary care pediatric hospital. Clin Pediatr. 2011;50:192–5.CrossRefGoogle Scholar
  6. 6.
    Dalton BG, Gonzalez KW, Boda S, Thomas PG, Sherman AK, St Peter SD. Optimizing fluid resuscitation in hypertrophic pyloric stenosis. J Pediatr Surg. 2016;51(8):1279–82.  https://doi.org/10.1016/j.jpedsurg.2016.01.013. Epub 2016 Feb 3.CrossRefPubMedGoogle Scholar
  7. 7.
    White MC, Langer JC, Don S, et al. Sensitivity and cost minimization analysis of radiology versus palpation for the diagnosis of hypertrophic pyloric stenosis. J Pediatr Surg. 1998;33:913–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Hernanz-Schulman M. Pyloric stenosis: role of imaging. Pediatr Radiol. 2009;39:S134–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Hirschsprung H. Falle von angeborener pyloric stenose. Jahrb Kinderhik. 1888;27:61.Google Scholar
  10. 10.
    Kusafuka T, Puri P. Altered messenger RNA expression of the neuronal nitric oxide synthase gene in infantile hypertrophic pyloric stenosis. Pediatr Surg Int. 1997;12:576–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Boybeyi O, Soyer T, Atasoy P, Gunal YD, Aslan MK. Investigation of the effects of enteral hormones on the pyloric muscle in newborn rats. J Pediatr Surg. 2015;50:408–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Serra A, Schuchardt K, Genuneit J, Leriche C, Fitze G. Genomic variants in the coding region of neuronal nitric oxide synthase (NOS1) in infantile hypertrophic pyloric stenosis. J Pediatr Surg. 2011;46:1903–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Aspelund G, Langer JC. Current management of hypertrophic pyloric stenosis. Semin Pediatr Surg. 2007;16:27–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Krogh C, Fischer TK, Skotte L, Biggar RJ, Øyen N, Skytthe A, et al. Familial aggregation and heritability of pyloric stenosis. JAMA. 2010;303(23):2393.CrossRefPubMedGoogle Scholar
  15. 15.
    Gladstein K, Spence MA. A statistical analysis of birth-order effects with application to data on pyloric stenosis. Ann Hum Genet. 1978;42:213–7.CrossRefGoogle Scholar
  16. 16.
    Vermes GG, László D, Czeizel A, Acs N. Maternal factors in the origin of infantile hypertrophic pyloric stenosis—a population-based case-control study. Congenit Anom. 2016;56(2):65–72.CrossRefGoogle Scholar
  17. 17.
    Krogh C, Biggar RJ, Fischer TK, Lindholm M, Wohlfahrt J, Melbye M. Bottle-feeding and the risk of pyloric stenosis. Pediatrics. 2012;130:e943–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rammstedt C. Zur operation der angeborenen pylorus stenose. Med Klin. 1912;8:1702–5.Google Scholar
  19. 19.
    Perger L, Fuchs JR, Komidar L, Mooney DP. Impact of surgical approach on outcome in 622 consecutive pyloromyotomies at a paediatric teaching institution. J Pediatr Surg. 2009;44:2119–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Eltayeb AA, Othman MH. Supraumbilical pyloromyotomy: a comparative study between intracavitary and extracavitary techniques. J Surg Educ. 2011;68:134–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Pelizzo G, Bernardi L, Carlini V, et al. Laparoscopy in children and its impact on brain oxygenation during routine inguinal hernia repair. J Minim Access Surg. 2017;13(1):51–6.  https://doi.org/10.4103/0972-9941.181800.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gupta R, Singh S. Challenges in paediatric laparoscopic surgeries. Indian J Anaesth. 2009;53(5):560–6.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Tytgat SH, Stolwijk LJ, Keunen K, Milstein DM, Lemmers PM, van der Zee DC. Brain oxygenation during laparoscopic correction of hypertrophicpyloric stenosis. J Laparoendosc Adv Surg Tech A. 2015;25:352–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Hall NJ, Van Der Zee J, Tan L, Pierro A. Meta-analysis of laparoscopic versus open pyloromyotomy. Ann Surg. 2004;240:774–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hall NJ, Eaton S, Seims A, et al. Risk of incomplete pyloromyotomy and mucosal perforation in open and laparoscopic pyloromyotomy. J Pediatr Surg. 2014;49:1083–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Ednie AC, Amram O, Creaser JC, Schuurman N, Leclerc S, Yanchar N. Hypertrophic pyloric stenosis in the maritimes: examining the waves of change over time. Can J Surg. 2016;59(6):383–90.  https://doi.org/10.1503/cjs.002816.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kawahara H, Takam Y, Yoshida H, et al. Medical treatment of hypertrophic pyloric stenosis: should we always slice the olive? J Pediatr Surg. 2005;40:1848–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Lukac M, Antunovic SS, Vujovic D, et al. Is abandonment of nonoperative management of hypertrophic pyloric stenosis warranted? Eur J Pediatr Surg. 2013;23:80–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Peters B, Oomen MW, Bakx R, Benninga MA. Advances in infantile hypertrophic pyloric stenosis. Expert Rev Gastroenterol Hepatol. 2014;8:533–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Kamata M, Cartabuke RS, Tobias JD. Perioperative care of infants with pyloric stenosis. Paediatr Anaesth. 2015;25:1193–206.  https://doi.org/10.1111/pan.12792.CrossRefPubMedGoogle Scholar
  31. 31.
    Nissen M, Cernaianu G, Thranhardt R, Vahad M, Barenberg K, et al. Does metabolic alkalosis influence cerebral oxygenation in infantile hypertrophic pyloric stenosis. J Surg Res. 212:229–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Yanchar NL, Rangu S. Corrected to uncorrected? The metabolic conundrum of hypertrophic pyloric stenosis. J Pediatr Surg. 2017;52(5):734–8.  https://doi.org/10.1016/j.jpedsurg.2017.01.024. Epub 2017 Jan 28.CrossRefPubMedGoogle Scholar
  33. 33.
    Cook-Sather SD, Tulloch HV, Liacouras CA, et al. Gastric fluid volume in infants for pyloromyotomy. Can J Anaesth. 1997;44:278–83.CrossRefPubMedGoogle Scholar
  34. 34.
    Fastle RK, Roback MG. Pediatric rapid sequence intubation: incidence of reflex bradycardia and effects of pretreatment with atropine. Pediatr Emerg Care. 2004;20(10):651–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Cook-Sather SD, Tulloch HV, Cnaan A, et al. A comparison of awake versus paralyzed tracheal intubation for infants with pyloric stenosis. Anesth Analg. 1998;86:945–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Algie CM, Mahar RK, Tan HB, et al. Effectiveness and risks of cricoid pressure during rapid sequence induction for endotracheal intubation. Cochrane Database Syst Rev. 2015;(11):CD011656. Published online 2015 Nov 18.Google Scholar
  37. 37.
    Neuhaus D, Schmitz A, Gerber A. Controlled rapid sequence induction and intubation—an analysis of 1001 children. Pediatr Anesth. 2013;23:734–40.CrossRefGoogle Scholar
  38. 38.
    Scrimgeour GE, Leather NW, Perry RS, et al. Gas induction for pyloromyotomy. Pediatr Anesth. 2015;25:677–80.CrossRefGoogle Scholar
  39. 39.
    Wang JT, Mancuso TJ. How to best induce anesthesia in infants with pyloric stenosis? Paediatr Anaesth. 2015;25(7):652–3.  https://doi.org/10.1111/pan.12690.CrossRefPubMedGoogle Scholar
  40. 40.
    Plaud B, Meretoja O, Hofmockel R, et al. Reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric and adult surgical patients. Anesthesiology. 2009;110:284–94.PubMedGoogle Scholar
  41. 41.
    Bouvet L, Albert ML, Augris C, Boselli E, et al. Real-time detection of gastric insufflation related to facemask pressure–controlled ventilation using ultrasonography of the antrum and epigastric auscultation in nonparalyzed patients: a prospective, randomized, double-blind study. Anesthesiology. 2014;120(2):326–34.CrossRefPubMedGoogle Scholar
  42. 42.
    Saldien V, Vermeyen KM, Wuyts FL. Target-controlled infusion of rocuronium in infants, children, and adults: a comparison of the pharmacokinetic and pharmacodynamic relationship. Anesth Analg. 2003;97:44–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Westrin P. The induction dose of propofol in infants 1-6 months of age and in children 10-16 years of age. Anesthesiology. 1991;74:455–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Pani N, Panda CK. Anaesthetic consideration for neonatal surgical emergencies. Indian J Anaesth. 2012;56(5):463–9.  https://doi.org/10.4103/0019-5049.103962.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sale SM, Read JA, Stoddart PA, et al. Prospective comparison of sevoflurane and desflurane in formerly premature infants undergoing inguinal herniotomy. Br J Anaesth. 2006;96:774–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Haidon JL, Cunliffe M. Analgesia for neonates. Contin Educ Anaesth Crit Care Pain. 2010;10(4):123–7.  https://doi.org/10.1093/bjaceaccp/mkq016.CrossRefGoogle Scholar
  47. 47.
    Willschke H, Machata AM, Rebhandl W, et al. Management of hypertrophic pylorus stenosis with ultrasound guided single shot epidural anaesthesia-a retrospective analysis of 20 cases. Pediatr Anesth. 2011;21:110–5.CrossRefGoogle Scholar
  48. 48.
    Somri M, Gaitini LA, Vaida SJ, et al. The effectiveness and safety of spinal anaesthesia in the pyloromyotomy procedure. Paediatr Anaesth. 2003;13:32–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Islam S, Larson SD, Kays DW, et al. Feasibility of laparoscopic pyloromyotomy under spinal anesthesia. J Pediatr Surg. 2014;49:1485–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Davidson AJ, Morton NS, Arnup SJ, et al. Apnea after awake-regional and general anesthesia in infants: the general anesthesia compared to spinal anesthesia (GAS) study: comparing apnea and neurodevelopmental outcomes, a randomized controlled trial. Anesthesiology. 2015;123(1):38–54.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sun LS, Li G, DiMaggio CJ, et al. Feasibility and Pilot Study of the Pediatric Anesthesia NeuroDevelopment Assessment (PANDA) Project. J Neurosurg Anesthesiol. 2012;24(4):382–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lady Cilento Children’s HospitalSouth BrisbaneAustralia

Personalised recommendations