Advertisement

Somatic Health Issues in Trauma-Related Disorders: Effects on Psychobiological Axes Affecting Mental and Physical Health

  • Anthony P. King
Chapter
Part of the Integrating Psychiatry and Primary Care book series (IPPC)

Abstract

Psychological trauma is common and can have long-lasting deleterious effects on mental and physical health. Childhood adversity and maltreatment, as well as adult exposures to interpersonal violence, accidents and disasters, and other life-threatening medical events, such as myocardial infarcts can all be associated with psychological trauma, as can even lifesaving medical procedures such as surgeries and intensive care unit stays. Exposure to trauma in childhood and as adults is associated with increased risk for psychiatric morbidity, in particular posttraumatic stress disorder (PTSD), but also increased rates of depression and anxiety disorders. It has long been appreciated that PTSD has substantial comorbidity with other psychiatric disorders, including in depression and substance use disorders, and there is also accumulating evidence that childhood adversity, adult trauma exposure, and PTSD all have considerable somatic health consequences and are associated with increased disease risk and increased medical morbidity and mortality. These include conditions often associated with somatization and psychiatric morbidity, such as irritable bowel disorder, fibromyalgia, and other chronic pain disorders, but also more common medical disorders such as coronary artery disorder, atherosclerosis, cancer, and stroke. Trauma exposure and PTSD are associated with increased levels of health risk behaviors, such as smoking, alcohol and drug use, poor diet, and physical activity, as well as increased body mass index (BMI) and rates of obesity; PTSD is also associated with poorer medical compliance and healthcare utilization. All of these at-risk health behaviors likely contribute to the increased morbidity and mortality associated with trauma exposure and PTSD. It is possible that, in addition, specific physiological processes related to trauma exposure and PTSD may also contribute to disease processes and increase morbidity. This chapter will review evidence linking trauma and PTSD to several psychobiological processes or “axes” that may contribute and/or mediate increased morbidity. Long-term effects of trauma and PTSD are presumably mediated and maintained by alterations on the brain/central nervous system (CNS) that then lead to alterations in output and activity of peripheral nervous system and autonomic as well as neuroendocrine systems that then effect changes on peripheral physiological processes such as cardiovascular function, immune function, and metabolism that lead to increased pathophysiological processes and disease risk. This chapter will review evidence of effects of trauma and PTSD on specific CNS functions that may be associated with “downstream” pathological processes, as well as evidence of effects of trauma and PTSD on the sympathetic autonomic system, the hypothalamic-pituitary-adrenal (HPA) axis, and immune function (in particular, inflammatory processes), all of which could contribute and/or mediate effects of trauma and PTSD on medical morbidity.

References

  1. 1.
    Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52(12):1048–60.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Breslau N, Davis GC, Andreski P, et al. Traumatic events and posttraumatic stress disorder in an urban population of young adults. Arch Gen Psychiatry. 1991;48:216–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Kulka RA, Schlenger WE, Fairbanks JA, Hough RL, Jordan BK, Marmar CR, Weiss DS. Trauma and the Vietnam War generation: report of findings from the National Vietnam veterans readjustment study. New York: Brunner/Mazel; 1990.Google Scholar
  4. 4.
    Cabrera OA, Hoge CW, Bliese PD, Castro CA, Messer SC. Childhood adversity and combat as predictors of depression and post-traumatic stress in deployed troops. Am J Prev Med. 2007;33(2):77–82.  https://doi.org/10.1016/j.amepre.2007.03.019.CrossRefPubMedGoogle Scholar
  5. 5.
    Koenen KC, Moffitt TE, Poulton R, Martin J, Caspi A. Early childhood factors associated with the development of post-traumatic stress disorder: results from a longitudinal birth cohort. Psychol Med. 2007;37(2):181–92.CrossRefPubMedGoogle Scholar
  6. 6.
    Shalev AY, Peri T, Canetti L, Schreiber S. Predictors of PTSD in injured trauma survivors: a prospective study. Am J Psychiatry. 1996;153(2):219–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Widom CS. Posttraumatic stress disorder in abused and neglected children grown up. Am J Psychiatry. 1999;156(8):1223–9.PubMedGoogle Scholar
  8. 8.
    Koenen KC, Harley R, Lyons MJ, Wolfe J, Simpson JC, Goldberg J, et al. A twin registry study of familial and individual risk factors for trauma exposure and posttraumatic stress disorder. J Nerv Ment Dis. 2002;190(4):209–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Rothbaum BO, Foa EB, Riggs DS, Murdock T, Walsh W. A prospective examination of post‐traumatic stress disorder in rape victims. J Trauma Stress. 1992;5(3)  https://doi.org/10.1002/jts.2490050309.CrossRefGoogle Scholar
  10. 10.
    Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–105.  https://doi.org/10.1001/jama.289.23.3095.CrossRefPubMedGoogle Scholar
  11. 11.
    Fulton JJ, Calhoun PS, Wagner HR, Schry AR, Hair LP, Feeling N, et al. The prevalence of posttraumatic stress disorder in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans: a meta-analysis. J Anxiety Disord. 2015;31:98–107.  https://doi.org/10.1016/j.janxdis.2015.02.003.CrossRefPubMedGoogle Scholar
  12. 12.
    Hoge CW, Castro CA, Messer SC, McGurk D, Cotting DI, Koffman RL. Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med. 2004;351(1):13–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Kang HK, Natelson BH, Mahan CM, Lee KY, Murphy FM. Post-traumatic stress disorder and chronic fatigue syndrome-like illness among Gulf War veterans: a population-based survey of 30,000 veterans. Am J Epidemiol. 2003;157(2):141–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Gillespie CF, Bradley B, Mercer K, Smith AK, Conneely K, Gapen M, et al. Trauma exposure and stress-related disorders in inner city primary care patients. Gen Hosp Psychiatry. 2009;31(6):505–14.  https://doi.org/10.1016/j.genhosppsych.2009.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK. The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry. 2003;64(12):1465–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Kuyken W, Warren FC, Taylor RS, Whalley B, Crane C, Bondolfi G, et al. Efficacy of mindfulness-based cognitive therapy in prevention of depressive relapse: an individual patient data meta-analysis from randomized trials. JAMA Psychiatry. 2016;73(6):565–74.  https://doi.org/10.1001/jamapsychiatry.2016.0076.CrossRefPubMedGoogle Scholar
  17. 17.
    Doerfler LA, Pbert L, DeCosimo D. Symptoms of posttraumatic stress disorder following myocardial infarction and coronary artery bypass surgery. Gen Hosp Psychiatry. 1994;16(3):193–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Carney RM, Freedland KE, Sheline YI, Weiss ES. Depression and coronary heart disease: a review for cardiologists. Clin Cardiol. 1997;20(3):196–200.CrossRefPubMedGoogle Scholar
  19. 19.
    Borowicz L Jr, Royall R, Grega M, Selnes O, Lyketsos C, McKhann G. Depression and cardiac morbidity 5 years after coronary artery bypass surgery. Psychosomatics. 2002;43(6):464–71.  https://doi.org/10.1176/appi.psy.43.6.464.CrossRefPubMedGoogle Scholar
  20. 20.
    Connerney I, Shapiro PA, McLaughlin JS, Bagiella E, Sloan RP. Relation between depression after coronary artery bypass surgery and 12-month outcome: a prospective study. Lancet. 2001;358(9295):1766–71.  https://doi.org/10.1016/S0140-6736(01)06803-9.CrossRefPubMedGoogle Scholar
  21. 21.
    Cserep Z, Balog P, Szekely J, Treszl A, Kopp MS, Thayer JF, Szekely A. Psychosocial factors and major adverse cardiac and cerebrovascular events after cardiac surgery. Interact Cardiovasc Thorac Surg. 2010;11(5):567–72.  https://doi.org/10.1510/icvts.2010.244582.CrossRefPubMedGoogle Scholar
  22. 22.
    Edmondson D, Richardson S, Falzon L, Davidson KW, Mills MA, Neria Y. Posttraumatic stress disorder prevalence and risk of recurrence in acute coronary syndrome patients: a meta-analytic review. PLoS One. 2012;7:e38915.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Edmondson D, Shaffer JA, Denton EG, Shimbo D, Clemow L. Posttraumatic stress and myocardial infarction risk perceptions in hospitalized acute coronary syndrome patients. Front Psychol. 2012;3:144.  https://doi.org/10.3389/fpsyg.2012.00144.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Berry E. Post-traumatic stress disorder after subarachnoid haemorrhage. Br J Clin Psychol. 1998;37(Pt 3):365–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Schelling G, Roozendaal B, Krauseneck T, Schmoelz M, De Quervain D, Briegel J. Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery. Ann N Y Acad Sci. 2006;1071:46–53.  https://doi.org/10.1196/annals.1364.005.CrossRefPubMedGoogle Scholar
  26. 26.
    Schelling G, Stoll C, Haller M, Briegel J, Manert W, Hummel T, et al. Health-related quality of life and posttraumatic stress disorder in survivors of the acute respiratory distress syndrome. Crit Care Med. 1998;26(4):651–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Sembi S, Tarrier N, O’Neill P, Burns A, Faragher B. Does post-traumatic stress disorder occur after stroke: a preliminary study. Int J Geriatr Psychiatry. 1998;13(5):315–22.  https://doi.org/10.1002/(SICI)1099-1166(199805)13:5<315::AID-GPS766>3.0.CO;2-P.CrossRefPubMedGoogle Scholar
  28. 28.
    Dew MA, DiMartini AF, Switzer GE, Kormos RL, Schulberg HC, Roth LH, Griffith BP. Patterns and predictors of risk for depressive and anxiety-related disorders during the first three years after heart transplantation. Psychosomatics. 2000;41(2):191–2.CrossRefPubMedGoogle Scholar
  29. 29.
    Stoll C, Schelling G, Goetz AE, Kilger E, Bayer A, Kapfhammer HP, et al. Health-related quality of life and post-traumatic stress disorder in patients after cardiac surgery and intensive care treatment. J Thorac Cardiovasc Surg. 2000;120(3):505–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Stukas AA Jr, Dew MA, Switzer GE, DiMartini A, Kormos RL, Griffith BP. PTSD in heart transplant recipients and their primary family caregivers. Psychosomatics. 1999;40(3):212–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Liberzon I, Abelson JL, Amdur RL, King AP, Cardneau JD, Henke P, Graham LM. Increased psychiatric morbidity after abdominal aortic surgery: risk factors for stress-related disorders. J Vasc Surg. 2006;43(5):929–34.CrossRefPubMedGoogle Scholar
  32. 32.
    King AP, Abelson JA, Gholami B, Upchurch G, Henke P, Graham L, Liberzon I. Pre-surgical psychological and neuroendocrine predictors of psychiatric morbidity following major vascular surgery: a prospective longitudinal study. Psychosom Med. 2015;77(9):993–1005.  https://doi.org/10.1097/PSY.0000000000000235.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Briere J, Jordan CE. Childhood maltreatment, intervening variables, and adult psychological difficulties in women: an overview. Trauma Violence Abuse. 2009;10(4):375–88.  https://doi.org/10.1177/1524838009339757. Review. PubMed PMID: 19776086.CrossRefPubMedGoogle Scholar
  34. 34.
    Kaplow JB, Dodge KA, Amaya-Jackson L, Saxe GN. Pathways to PTSD, part II: sexually abused children. Am J Psychiatry. 2005;162(7):1305–10. PubMed PMID: 15994713; PubMed Central PMCID: PMC2754170.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Briere J, Elliott DM. Prevalence and psychological sequelae of self-reported childhood physical and sexual abuse in a general population sample of men and women. Child Abuse Negl. 2003;27(10):1205–22. PubMed PMID: 14602100.CrossRefPubMedGoogle Scholar
  36. 36.
    Zlotnick C, Johnson J, Kohn R, Vicente B, Rioseco P, Saldivia S. Childhood trauma, trauma in adulthood, and psychiatric diagnoses: results from a community sample. Compr Psychiatry. 2008;49(2):163–9.  https://doi.org/10.1016/j.comppsych.2007.08.007. PubMed PMID: 18243889; PubMed Central PMCID: PMC2648973.CrossRefPubMedGoogle Scholar
  37. 37.
    Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. Am J Psychiatry. 2002;159(7):1133–45. PubMed PMID: 12091191.CrossRefPubMedGoogle Scholar
  38. 38.
    Kendler KS, Bulik CM, Silberg J, Hettema JM, Myers J, Prescott CA. Childhood sexual abuse and adult psychiatric and substance use disorders in women: an epidemiological and cotwin control analysis. Arch Gen Psychiatry. 2000;57(10):953–9. PubMed PMID: 11015813.CrossRefPubMedGoogle Scholar
  39. 39.
    Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Brady K, Weiss RD, Farrer L, Gelernter J. Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations. Arch Gen Psychiatry. 2009;66(11):1201–9.  https://doi.org/10.1001/archgenpsychiatry.2009.153. PubMed PMID: 19884608; PubMed Central PMCID: PMC2867334.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Breslau N. Trauma and mental health in US inner-city populations. Gen Hosp Psychiatry. 2009;31(6):501–2.  https://doi.org/10.1016/j.genhosppsych.2009.07.001. Erratum in: Gen Hosp Psychiatry. 2010;32(1):117. PubMed PMID: 19892206.CrossRefPubMedGoogle Scholar
  41. 41.
    Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, Tang Y, Gillespie CF, Heim CM, Nemeroff CB, Schwartz AC, Cubells JF, Ressler KJ. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299(11):1291–305.  https://doi.org/10.1001/jama.299.11.1291. PubMed PMID: 18349090; PubMed Central PMCID: PMC2441757.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Felitti V, Anda R, Nordenberg D, Williamson DF, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: the Adverse Childhood Experience (ACE) study. Am J Prev Med. 1998;14:245–58.CrossRefPubMedGoogle Scholar
  43. 43.
    Anda RF, Brown DW, Dube SR, et al. Adverse childhood experiences and chronic obstructive pulmonary disease in adults. Am J Prev Med. 2010;34:396–403.CrossRefGoogle Scholar
  44. 44.
    Dong M, Giles WH, Felitti VJ, et al. Insights into causal pathways for ischemic heart disease: Adverse Childhood Experiences Study. Circulation. 2004;110:1761–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Dube S, Fairweather D, Pearson W, et al. Cumulative childhood stress and autoimmune diseases in adults. Psychosom Med. 2009;71:243–50.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dong M, Dube SR, Felitti VJ, Giles WH, Anda RF. Adverse childhood experiences and self-reported liver disease: new insights into a causal pathway. Arch Intern Med. 2003;163:1949–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Boscarino JA. A prospective study of PTSD and early-age heart disease mortality among Vietnam veterans: implications for surveillance and prevention. Psychosom Med. 2008;70:668–76.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Edmondson D, Cohen BE. Posttraumatic stress disorder and cardiovascular disease. Prog Cardiovasc Dis. 2013;55:548–56.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lohr JB, Palmer BW, Eidt CA, Aailaboyina S, Mausbach BT, Wolkowitz OM, Thorp SR, Jeste DV. Is post-traumatic stress disorder associated with premature senescence? A review of the literature. Am J Geriatr Psychiatr. 2015;23:709–25.CrossRefGoogle Scholar
  50. 50.
    Boscarino JA. Posttraumatic stress disorder and physical illness: results from clinical and epidemiologic studies. Ann N Y Acad Sci. 2004;1032:141–53. PubMed PMID: 15677401.CrossRefPubMedGoogle Scholar
  51. 51.
    Roy SS, Foraker RE, Girton RA, Mansfield AJ. Posttraumatic stress disorder and incident heart failure among a community-based sample of US veterans. Am J Public Health. 2015;105:757–63.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Beristianos MH, Yaffe K, Cohen B, Byers AL. PTSD and risk of incident cardiovascular disease in aging veterans. Am J Geriatr Psychiatry. 2016;24(3):192–200.  https://doi.org/10.1016/j.jagp.2014.12.003. PubMed PMID: 25555625.CrossRefPubMedGoogle Scholar
  53. 53.
    Scherrer JF, Chrusciel T, Zeringue A, Garfield LD, Hauptman PJ, Lustman PJ, Freedland KE, Carney RM, Bucholz KK, Owen R. Anxiety disorders increase risk for incident myocardial infarction in depressed and nondepressed Veterans Administration patients. Am Heart J. 2010;159:772–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Gradus JL, Farkas DK, Svensson E, Ehrenstein V, Lash TL, Milstein A, Adler N, Sørensen HT. Associations between stress disorders and cardiovascular disease events in the Danish population. BMJ Open. 2015;5(12):e009334.  https://doi.org/10.1136/bmjopen-2015-009334. PubMed PMID: 26667014; PubMed Central PMCID: PMC4679888.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen M-H, Pan T-L, Li C-T, Lin W-C, Chen Y-S, Lee Y-C, Tsai S-J, Hsu J-W, Huang K-L, Tsai C-F. Risk of stroke among patients with post-traumatic stress disorder: nationwide longitudinal study. Br J Psychiatry. 2015;206:302–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Boyko EJ, Jacobson IG, Smith B, Ryan MAK, Hooper TI, Amoroso PJ, Gackstetter GD, Barrett-Connor E, Smith TC, Millennium Cohort Study Team. Risk of diabetes in U.S. military service members in relation to combat deployment and mental health. Diabetes Care. 2010;33:1771–7.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Roberts AL, Agnew-Blais JC, Spiegelman D, Kubzansky LD, Mason SM, Galea S, Hu FB, Rich-Edwards JW, Koenen KC. Posttraumatic stress disorder and incidence of type 2 diabetes mellitus in a sample of women: a 22-year longitudinal study. JAMA Psychiatry. 2015;72:203–10.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Allison TG, Williams DE, Miller TD, Patten CA, Bailey KR, Squires RW, Gau GT. Medical and economic costs of psychologic distress in patients with coronary artery disease. Mayo Clin Proc. 1995;70(8):734–42.CrossRefPubMedGoogle Scholar
  59. 59.
    Trask PC, Schwartz SM, Deaner SL, Paterson AG, Johnson T, Rubenfire M, Pomerleau OF. Behavioral medicine: the challenge of integrating psychological and behavioral approaches into primary care. Eff Clin Pract. 2002;5(2):75–83.PubMedGoogle Scholar
  60. 60.
    Druss BG, Rohrbaugh RM, Rosenheck RA. Depressive symptoms and health costs in older medical patients. Am J Psychiatry. 1999;156(3):477–9.PubMedGoogle Scholar
  61. 61.
    Unutzer J, Schoenbaum M, Katon WJ, Fan MY, Pincus HA, Hogan D, Taylor J. Healthcare costs associated with depression in medically Ill fee-for-service medicare participants. J Am Geriatr Soc. 2009;57(3):506–10.  https://doi.org/10.1111/j.1532-5415.2008.02134.xJGS2134.CrossRefPubMedGoogle Scholar
  62. 62.
    Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164(10):1476–88.  https://doi.org/10.1176/appi.ajp.2007.07030504.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    O’Doherty DCM, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res. 2015;232(1):1–33.  https://doi.org/10.1016/j.pscychresns.2015.01.002.CrossRefPubMedGoogle Scholar
  64. 64.
    Stark EA, Parsons CE, Van Hartevelt TJ, Charquero-Ballester M, McManners H, Ehlers A, et al. Post-traumatic stress influences the brain even in the absence of symptoms: a systematic, quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2015;56:207–21.  https://doi.org/10.1016/j.neubiorev.2015.07.007.CrossRefPubMedGoogle Scholar
  65. 65.
    Kovács KJ. CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat. 2013;54:25–33.  https://doi.org/10.1016/j.jchemneu.2013.05.003. Review. PubMed PMID: 23774011.CrossRefPubMedGoogle Scholar
  66. 66.
    Kalin NH, Shelton SE, Davidson RJ. Cerebrospinal fluid corticotropin-releasing hormone levels are elevated in monkeys with patterns of brain activity associated with fearful temperament. Biol Psychiatry. 2000;47(7):579–85. PubMed PMID: 10745049.CrossRefPubMedGoogle Scholar
  67. 67.
    Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry. 1999;156(4):585–8. Erratum in: Am J Psychiatry 1999;156(6):986. PubMed PMID: 10200738.PubMedGoogle Scholar
  68. 68.
    Bremner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C, et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol Psychiatry. 1997;41(1):23–32.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14(6):417–28.  https://doi.org/10.1038/nrn3492. Review. PubMed PMID: 23635870; PubMed Central PMCID: PMC5072129.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry. 2000;47(9):769–76.CrossRefPubMedGoogle Scholar
  71. 71.
    Liberzon I, Martis B. Neuroimaging studies of emotional responses in PTSD. Ann N Y Acad Sci. 2006;1071:87–109.  https://doi.org/10.1196/annals.1364.009.CrossRefPubMedGoogle Scholar
  72. 72.
    Quirk GJ, Russo GK, Barron JL, Lebron K. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci. 2000;20(16):6225–31. PubMed PMID: 10934272.CrossRefPubMedGoogle Scholar
  73. 73.
    Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002;14(8):1215–29. PubMed PMID: 12495527.CrossRefPubMedGoogle Scholar
  74. 74.
    Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66:1075–82.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci. 1990;10(4):1062–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Campeau S, Davis M. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci. 1995;15(3 Pt 2):2312–27. PubMed PMID: 7891169.CrossRefPubMedGoogle Scholar
  77. 77.
    Quirk GJ. Extinction: new excitement for an old phenomenon. Biol Psychiatry. 2006;60(4):317–8. PubMed PMID: 16919520.CrossRefPubMedGoogle Scholar
  78. 78.
    Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62:446–54.CrossRefPubMedGoogle Scholar
  79. 79.
    Garfinkel SN, Abelson JL, King AP, Sripada RK, Wang X, Gaines LM, Liberzon I. Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal. J Neurosci. 2014;34(40):13435–43.  https://doi.org/10.1523/JNEUROSCI.4287-13.2014. PubMed PMID: 25274821; PubMed Central PMCID: PMC4262698.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    De Bellis MD, Keshavan MS, Shifflett H, Iyengar S, Beers SR, Hall J, Moritz G. Brain structures in pediatric maltreatment-related posttraumatic stress disorder: a sociodemographically matched study. Biol Psychiatry. 2002;52(11):1066–78.CrossRefPubMedGoogle Scholar
  81. 81.
    Hedges DW, Thatcher GW, Bennett PJ, Sood S, Paulson D, Creem-Regehr S, Brown BL, Allen S, Johnson J, Froelich B, Bigler ED. Brain integrity and cerebral atrophy in Vietnam combat veterans with and without posttraumatic stress disorder. Neurocase. 2007;13(5):402–10.  https://doi.org/10.1080/13554790701851551. PubMed PMID: 18781439.CrossRefPubMedGoogle Scholar
  82. 82.
    St Jacques PL, Botzung A, Miles A, Rubin DC. Functional neuroimaging of emotionally intense autobiographical memories in post-traumatic stress disorder. J Psychiatr Res. 2011;45(5):630–7.  https://doi.org/10.1016/j.jpsychires.2010.10.011. PubMed PMID: 21109253; PubMed Central PMCID: PMC3081954.CrossRefPubMedGoogle Scholar
  83. 83.
    Bryant RA, Kemp AH, Felmingham KL, Liddell B, Olivieri G, Peduto A, Gordon E, Williams LM. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: an fMRI study. Hum Brain Mapp. 2008;29(5):517–23. PubMed PMID: 17525984.CrossRefPubMedGoogle Scholar
  84. 84.
    Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry. 2005;62(3):273–81.  https://doi.org/10.1001/archpsyc.62.3.273.CrossRefPubMedGoogle Scholar
  85. 85.
    Williams JB, Alexander KP, Morin JF, Langlois Y, Noiseux N, Perrault LP, et al. Preoperative anxiety as a predictor of mortality and major morbidity in patients aged >70 years undergoing cardiac surgery. Am J Cardiol. 2013;111(1):137–42.  https://doi.org/10.1016/j.amjcard.2012.08.060.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Liberzon I, Abelson JL, Flagel SB, Raz J, Young EA. Neuroendocrine and psychophysiologic responses in PTSD: a symptom provocation study. Neuropsychopharmacology. 1999;21(1):40–50.CrossRefPubMedGoogle Scholar
  87. 87.
    Pissiota A, Frans O, Fernandez M, von Knorring L, Fischer H, Fredrikson M. Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. Eur Arch Psychiatry Clin Neurosci. 2002;252(2):68–75. PubMed PMID: 12111339.CrossRefPubMedGoogle Scholar
  88. 88.
    Vermetten E, Schmahl C, Southwick SM, Bremner JD. Positron tomographic emission study of olfactory induced emotional recall in veterans with and without combat-related posttraumatic stress disorder. Psychopharmacol Bull. 2007;40(1):8–30. PubMed PMID: 17285093; PubMed Central PMCID: PMC3236699.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Driessen M, Beblo T, Mertens M, Piefke M, Rullkoetter N, Silva-Saavedra A, Reddemann L, Rau H, Markowitsch HJ, Wulff H, Lange W, Woermann FG. Posttraumatic stress disorder and fMRI activation patterns of traumatic memory in patients with borderline personality disorder. Biol Psychiatry. 2004;55(6):603–11. PubMed PMID: 15013829.CrossRefPubMedGoogle Scholar
  90. 90.
    Morey RA, Dolcos F, Petty CM, Cooper DA, Hayes JP, LaBar KS, McCarthy G. The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder. J Psychiatr Res. 2009;43(8):809–17.  https://doi.org/10.1016/j.jpsychires.2008.10.014. PubMed PMID: 19091328; PubMed Central PMCID: PMC2684984.CrossRefPubMedGoogle Scholar
  91. 91.
    Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM, et al. A positron emission tomographic study of symptom provocation in PTSD. Ann N Y Acad Sci. 1997;821:521–3.CrossRefPubMedGoogle Scholar
  92. 92.
    Bremner JD, Narayan M, Staib LH, Southwick SM, McGlashan T, Charney DS. Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry. 1999;156(11):1787–95.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Britton JC, Phan KL, Taylor SF, Fig LM, Liberzon I. Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biol Psychiatry. 2005;57(8):832–40.CrossRefPubMedGoogle Scholar
  94. 94.
    Lanius RA, Bluhm RL, Coupland NJ, Hegadoren KM, Rowe B, Theberge J, et al. Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr Scand. 2010;121(1):33–40.  https://doi.org/10.1111/j.1600-0447.2009.01391.x.CrossRefPubMedGoogle Scholar
  95. 95.
    Phan KL, Britton JC, Taylor SF, Fig LM, Liberzon I. Corticolimbic blood flow during nontraumatic emotional processing in posttraumatic stress disorder. Arch Gen Psychiatry. 2006;63(2):184–92. PubMed PMID: 16461862.CrossRefPubMedGoogle Scholar
  96. 96.
    Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N, Grillon C, Charney DS. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med. 2005;35(6):791–806. PubMed PMID: 15997600; PubMed Central PMCID: PMC3233760.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord. 2012;139(1):56–65.  https://doi.org/10.1016/j.jad.2011.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;16(12):584–92.  https://doi.org/10.1016/j.tics.2012.10.008.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Cole MW, Repovs G, Anticevic A. The frontoparietal control system: a central role in mental health. Neuroscientist. 2014;20(6):652–64.  https://doi.org/10.1177/1073858414525995.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Hamilton JP, Chen MC, Gotlib IH. Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis. 2013;52:4–11.  https://doi.org/10.1016/j.nbd.2012.01.015.CrossRefPubMedGoogle Scholar
  101. 101.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8.  https://doi.org/10.1073/pnas.0504136102.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–65.  https://doi.org/10.1152/jn.00338.2011.CrossRefPubMedGoogle Scholar
  103. 103.
    Herringa RJ, Birn RM, Ruttle PL, Burghy CA, Stodola DE, Davidson RJ, Essex MJ. Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proc Natl Acad Sci U S A. 2013;110(47):19119–24.  https://doi.org/10.1073/pnas.1310766110.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Rabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, Phan KL. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. Front Psychiatry. 2011;2:62.  https://doi.org/10.3389/fpsyt.2011.00062.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Sripada RK, King AP, Garfinkel SN, Wang X, Sripada CS, Welsh RC, Liberzon I. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J Psychiatry Neurosci. 2012;37(4):241–9.  https://doi.org/10.1503/jpn.110069.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, Liberzon I. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med. 2012;74(9):904–11.  https://doi.org/10.1097/PSY.0b013e318273bf33.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Rabellino D, Tursich M, Frewen PA, Daniels JK, Densmore M, Theberge J, Lanius RA. Intrinsic connectivity networks in post-traumatic stress disorder during sub- and supraliminal processing of threat-related stimuli. Acta Psychiatr Scand. 2015;132(5):365–78.  https://doi.org/10.1111/acps.12418.CrossRefPubMedGoogle Scholar
  108. 108.
    Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42:33–84.CrossRefPubMedGoogle Scholar
  109. 109.
    Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.CrossRefPubMedGoogle Scholar
  110. 110.
    van der Kolk B, Greenberg M, Boyd H, Krystal J. Inescapable shock, neurotransmitters, and addiction to trauma: toward a psychobiology of post traumatic stress. Biol Psychiatry. 1985;20:314–25.CrossRefPubMedGoogle Scholar
  111. 111.
    Grant SJ, Huang YH, Redmond DE Jr. Behavior of monkeys during opiate withdrawal and locus coeruleus stimulation. Pharmacol Biochem Behav. 1988;30:13–9.CrossRefPubMedGoogle Scholar
  112. 112.
    George SA, Knox D, Curtis AL, Aldridge JW, Valentino RJ, Liberzon I. Altered locus coeruleus-norepinephrine function following single prolonged stress. Eur J Neurosci. 2013;37:901–9.CrossRefPubMedGoogle Scholar
  113. 113.
    Geracioti TD Jr, Baker DG, Ekhator NN, West SA, Hill KK, Bruce AB, Schmidt D, Rounds-Kugler B, Yehuda R, Keck PE Jr, Kasckow JW. CSF norepinephrine concentrations in posttraumatic stress disorder. Am J Psychiatry. 2001;158(8):1227–30. PubMed PMID: 11481155.CrossRefPubMedGoogle Scholar
  114. 114.
    Geracioti TD Jr, Baker DG, Kasckow JW, Strawn JR, Jeffrey Mulchahey J, Dashevsky BA, Horn PS, Ekhator NN. Effects of trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology. 2008;33(4):416–24.  https://doi.org/10.1016/j.psyneuen.2007.12.012. PubMed PMID: 18295412.CrossRefPubMedGoogle Scholar
  115. 115.
    Southwick SM, Krystal JH, Bremner JD, Morgan CA III, Nicolaou AL, Nagy LM, et al. Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54(8):749–58.CrossRefPubMedGoogle Scholar
  116. 116.
    Raskind MA, Peskind ER. Prazosin for post-traumatic stress disorder. N Engl J Med. 2018;378(17):1649–50.  https://doi.org/10.1056/NEJMc1803171. PubMed PMID: 29694817.CrossRefPubMedGoogle Scholar
  117. 117.
    Pietrzak RH, Gallezot JD, Ding YS, Henry S, Potenza MN, Southwick SM, et al. Association of posttraumatic stress disorder with reduced in vivo norepinephrine transporter availability in the locus coeruleus. JAMA Psychiatry. 2013;70:1199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Naegeli C, Zeffiro T, Piccirelli M, Jaillard A, Weilenmann A, Hassanpour K, Schick M, Rufer M, Orr SP, Mueller-Pfeiffer C. Locus Coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol Psychiatry. 2018;83(3):254–62.  https://doi.org/10.1016/j.biopsych.2017.08.021. PubMed PMID: 29100627.CrossRefPubMedGoogle Scholar
  119. 119.
    Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44(1):109–20.  https://doi.org/10.1016/j.neuron.2004.08.028.CrossRefPubMedGoogle Scholar
  120. 120.
    Mizuno K, Giese KP. Hippocampus-dependent memory formation: do memory type-specific mechanisms exist? J Pharmacol Sci. 2005;98(3):191–7.  https://doi.org/10.1254/jphs.CRJ05005X.CrossRefPubMedGoogle Scholar
  121. 121.
    Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991;12(2):118–34.CrossRefPubMedGoogle Scholar
  122. 122.
    Lathe R. Hormones and the hippocampus. J Endocrinol. 2001;169(2):205–31.CrossRefPubMedGoogle Scholar
  123. 123.
    Richter-Levin G. The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist. 2004;10(1):31–9.  https://doi.org/10.1177/1073858403259955.CrossRefPubMedGoogle Scholar
  124. 124.
    Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142(1):1–20.  https://doi.org/10.1016/j.neuroscience.2006.06.027.CrossRefPubMedGoogle Scholar
  125. 125.
    de Kloet ER, Karst H, Joels M. Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol. 2008;29(2):268–72.CrossRefPubMedGoogle Scholar
  126. 126.
    Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57(10):925–35.CrossRefPubMedGoogle Scholar
  127. 127.
    Starkman MN. Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration. Endocrinol Metab Clin North Am. 2013;42(3):477–88.  https://doi.org/10.1016/j.ecl.2013.05.010. Review. PubMed PMID: 24011881.CrossRefPubMedGoogle Scholar
  128. 128.
    Karl A, Schaefer M, Malta LS, Dorfel D, Rohleder N, Werner A. A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev. 2006;30:1004–31.CrossRefPubMedGoogle Scholar
  129. 129.
    Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord. 2005;88:79–86.CrossRefPubMedGoogle Scholar
  130. 130.
    Smith ME. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus. 2005;15:798–807.CrossRefPubMedGoogle Scholar
  131. 131.
    Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, Densmore M, Haswell CC, Ipser J, Koch SBJ, Korgaonkar M, Lebois LAM, Peverill M, Baker JT, Boedhoe PSW, Frijling JL, Gruber SA, Harpaz-Rotem I, Jahanshad N, Koopowitz S, Levy I, Nawijn L, O’Connor L, Olff M, Salat DH, Sheridan MA, Spielberg JM, van Zuiden M, Winternitz SR, Wolff JD, Wolf EJ, Wang X, Wrocklage K, Abdallah CG, Bryant RA, Geuze E, Jovanovic T, Kaufman ML, King AP, Krystal JH, Lagopoulos J, Bennett M, Lanius R, Liberzon I, McGlinchey RE, McLaughlin KA, Milberg WP, Miller MW, Ressler KJ, Veltman DJ, Stein DJ, Thomaes K, Thompson PM, Morey RA. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from Posttraumatic Stress Disorder Consortia. Biol Psychiatry. 2018;83(3):244–53.  https://doi.org/10.1016/j.biopsych.2017.09.006. PubMed PMID: 29217296.CrossRefPubMedGoogle Scholar
  132. 132.
    Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB, et al. Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol Psychiatry. 2004;56(5):356–63.  https://doi.org/10.1016/j.biopsych.2004.05.021.CrossRefPubMedGoogle Scholar
  133. 133.
    Lanius RA, Williamson PC, Densmore M, Boksman K, Gupta MA, Neufeld RW, Gati JS, Menon RS. Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation. Am J Psychiatry. 2001;158(11):1920–2. PubMed PMID: 11691703.CrossRefPubMedGoogle Scholar
  134. 134.
    Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Peters PM, Metzger LJ, Dougherty DD, Cannistraro PA, Alpert NM, Fischman AJ, Pitman RK. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry. 2004;61(2):168–76. PubMed PMID: 14757593.CrossRefPubMedGoogle Scholar
  135. 135.
    Hou C, Liu J, Wang K, Li L, Liang M, He Z, Liu Y, Zhang Y, Li W, Jiang T. Brain responses to symptom provocation and trauma-related short-term memory recall in coal mining accident survivors with acute severe PTSD. Brain Res. 2007;1144:165–74. PubMed PMID: 17331476.CrossRefPubMedGoogle Scholar
  136. 136.
    Yang P, Wu MT, Hsu CC, Ker JH. Evidence of early neurobiological alternations in adolescents with posttraumatic stress disorder: a functional MRI study. Neurosci Lett. 2004;370(1):13–8. PubMed PMID: 15489009.CrossRefPubMedGoogle Scholar
  137. 137.
    Kim SJ, Lyoo IK, Lee YS, Kim J, Sim ME, Bae SJ, Kim HJ, Lee JY, Jeong DU. Decreased cerebral blood flow of thalamus in PTSD patients as a strategy to reduce re-experience symptoms. Acta Psychiatr Scand. 2007;116(2):145–53. PubMed PMID: 17650277.CrossRefPubMedGoogle Scholar
  138. 138.
    Bryant RA, Felmingham KL, Kemp AH, Barton M, Peduto AS, Rennie C, Gordon E, Williams LM. Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biol Psychiatry. 2005;58(2):111–8. PubMed PMID: 16038681.CrossRefPubMedGoogle Scholar
  139. 139.
    Semple WE, Goyer PF, McCormick R, Donovan B, Muzic RF Jr, Rugle L, McCutcheon K, Lewis C, Liebling D, Kowaliw S, Vapenik K, Semple MA, Flener CR, Schulz SC. Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry. 2000;63(1):65–74. PubMed PMID: 10855761.CrossRefPubMedGoogle Scholar
  140. 140.
    Shin LM, Whalen PJ, Pitman RK, Bush G, Macklin ML, Lasko NB, Orr SP, McInerney SC, Rauch SL. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry. 2001;50(12):932–42. PubMed PMID: 11750889.CrossRefPubMedGoogle Scholar
  141. 141.
    Felmingham K, Kemp A, Williams L, Das P, Hughes G, Peduto A, Bryant R. Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol Sci. 2007;18(2):127–9. PubMed PMID: 17425531.CrossRefPubMedGoogle Scholar
  142. 142.
    King AP, Block SR, Sripada RK, Rauch SA, Porter KE, Favorite TK, Giardino N, Liberzon I. A pilot study of mindfulness-based exposure therapy in OEF/OIF combat veterans with PTSD: altered medial frontal cortex and amygdala responses in social-emotional processing. Front Psychiatry. 2016;7:154. eCollection 2016. PubMed PMID: 27703434; PubMed Central PMCID: PMC5028840.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Lansing K, Amen DG, Hanks C, Rudy L. High-resolution brain SPECT imaging and eye movement desensitization and reprocessing in police officers with PTSD. J Neuropsychiatry Clin Neurosci. 2005;17(4):526–32. PubMed PMID: 16387993.CrossRefPubMedGoogle Scholar
  144. 144.
    Seedat S, Warwick J, van Heerden B, Hugo C, Zungu-Dirwayi N, Van Kradenburg J, Stein DJ. Single photon emission computed tomography in posttraumatic stress disorder before and after treatment with a selective serotonin reuptake inhibitor. J Affect Disord. 2004;80(1):45–53. PubMed PMID: 15094257.CrossRefPubMedGoogle Scholar
  145. 145.
    Bluhm R, Williamson P, Lanius R, Theberge J, Densmore M, Bartha R, et al. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin Neurosci. 2009;63(6):754–61.  https://doi.org/10.1111/j.1440-1819.2009.02030.x.CrossRefPubMedGoogle Scholar
  146. 146.
    Birn RM, Patriat R, Phillips ML, Germain A, Herringa RJ. Childhood maltreatment and combat posttraumatic stress differentially predict fear-related fronto-subcortical connectivity. Depress Anxiety. 2014;31(10):880–92.  https://doi.org/10.1002/da.22291.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Miller DR, Hayes SM, Hayes JP, Spielberg JM, Lafleche G, Verfaellie M. Default mode network subsystems are differentially disrupted in posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(4):363–71.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Krystal JH, Neumeister A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res. 2009;1293:13–23.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    O’Donnell T, Hegadoren KM, Coupland NC. Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder. Neuropsychobiology. 2004;50(4):273–83.CrossRefPubMedGoogle Scholar
  150. 150.
    Hendrickson RC, Raskind MA. Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol. 2016;284(Pt B):181–95.  https://doi.org/10.1016/j.expneurol.2016.05.014. Review. PubMed PMID: 27222130.CrossRefPubMedGoogle Scholar
  151. 151.
    Jones E. Historical approaches to post-combat disorders. Philos Trans R Soc Lond B Biol Sci. 2006;361(1468):533–42. PubMed PMID: 16687259; PubMed Central PMCID: PMC1569621.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Orr SP, Metzger LJ, Pitman RK. Psychophysiology of post-traumatic stress disorder. Psychiatr Clin North Am. 2002;25(2):271–93.CrossRefPubMedGoogle Scholar
  153. 153.
    Pitman RK, Orr SP. Psychophysiologic testing for post-traumatic stress disorder: forensic psychiatric application. Bull Am Acad Psychiatry Law. 1993;21(1):37–52.PubMedGoogle Scholar
  154. 154.
    Pitman RK, Orr SP, Steketee GS. Psychophysiological investigations of posttraumatic stress disorder imagery. Psychopharmacol Bull. 1989;25(3):426–31.PubMedGoogle Scholar
  155. 155.
    Pitman RK, Orr SP, Forgue DF, de Jong JB, Claiborn JM. Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Arch Gen Psychiatry. 1987;44(11):970–5.CrossRefPubMedGoogle Scholar
  156. 156.
    Pitman RK, Orr SP, Shalev AY, Metzger LJ, Mellman TA. Psychophysiological alterations in post-traumatic stress disorder. Semin Clin Neuropsychiatry. 1999;4(4):234–41. https://doi.org/10.153/SCNP00400234.
  157. 157.
    Shalev AY, Orr SP, Pitman RK. Psychophysiologic response during script-driven imagery as an outcome measure in posttraumatic stress disorder. J Clin Psychiatry. 1992;53(9):324–6.PubMedGoogle Scholar
  158. 158.
    Hughes JW, Feldman ME, Beckham JC. Posttraumatic stress disorder is associated with attenuated baroreceptor sensitivity among female, but not male, smokers. Biol Psychol. 2006;71(3):296–302. PubMed PMID: 16011871.CrossRefPubMedGoogle Scholar
  159. 159.
    Woodward SH, Kaloupek DG, Streeter CC, Kimble MO, Reiss AL, Eliez S, et al. Hippocampal volume, PTSD, and alcoholism in combat veterans. Am J Psychiatry. 2006;163(4):674–81.  https://doi.org/10.1176/appi.ajp.163.4.674.CrossRefPubMedGoogle Scholar
  160. 160.
    Minassian A, Geyer MA, Baker DG, Nievergelt CM, O’Connor DT, Risbrough VB, Team MRS. Heart rate variability characteristics in a large group of active-duty marines and relationship to posttraumatic stress. Psychosom Med. 2014;76(4):292–301.  https://doi.org/10.1097/PSY.0000000000000056. PubMed PMID: 24804881; PubMed Central PMCID: PMC4062545.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Keary TA, Hughes JW, Palmieri PA. Women with posttraumatic stress disorder have larger decreases in heart rate variability during stress tasks. Int J Psychophysiol. 2009;73(3):257–64.  https://doi.org/10.1016/j.ijpsycho.2009.04.003. PubMed PMID: 19374925.CrossRefPubMedGoogle Scholar
  162. 162.
    Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron. 2016;89(1):221–34.  https://doi.org/10.1016/j.neuron.2015.11.028. PubMed PMID: 26711118; PubMed Central PMCID: PMC4707070.CrossRefPubMedGoogle Scholar
  163. 163.
    Cascardi M, Armstrong D, Chung L, Paré D. Pupil response to threat in trauma-exposed individuals with or without PTSD. J Trauma Stress. 2015;28(4):370–4.  https://doi.org/10.1002/jts.22022. PubMed PMID: 26215078; PubMed Central PMCID: PMC4743760.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Kimble MO, Fleming K, Bandy C, Kim J, Zambetti A. Eye tracking and visual attention to threating stimuli in veterans of the Iraq war. J Anxiety Disord. 2010;24(3):293–9.  https://doi.org/10.1016/j.janxdis.2009.12.006. PubMed PMID: 20138463; PubMed Central PMCID: PMC2838961.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    De Bellis MD, Baum AS, Birmaher B, Ryan ND. Urinary catecholamine excretion in childhood overanxious and posttraumatic stress disorders. Ann N Y Acad Sci. 1997;821:451–5.CrossRefPubMedGoogle Scholar
  166. 166.
    Wingenfeld K, Whooley MA, Neylan TC, Otte C, Cohen BE. Effect of current and lifetime posttraumatic stress disorder on 24-h urinary catecholamines and cortisol: results from the Mind Your Heart Study. Psychoneuroendocrinology. 2015;52:83–91.  https://doi.org/10.1016/j.psyneuen.2014.10.023. PubMed PMID: 25459895; PubMed Central PMCID: PMC4297502.CrossRefPubMedGoogle Scholar
  167. 167.
    Young EA, Breslau N. Saliva cortisol in posttraumatic stress disorder: a community epidemiologic study. Biol Psychiatry. 2004;56(3):205–9. PubMed PMID: 15271590.CrossRefPubMedGoogle Scholar
  168. 168.
    Nicholson EL, Bryant RA, Felmingham KL. Interaction of noradrenaline and cortisol predicts negative intrusive memories in posttraumatic stress disorder. Neurobiol Learn Mem. 2014;112:204–11.  https://doi.org/10.1016/j.nlm.2013.11.018. PubMed PMID: 24296460.CrossRefPubMedGoogle Scholar
  169. 169.
    Keeshin BR, Strawn JR, Out D, Granger DA, Putnam FW. Elevated salivary alpha amylase in adolescent sexual abuse survivors with posttraumatic stress disorder symptoms. J Child Adolesc Psychopharmacol. 2015;25(4):344–50.  https://doi.org/10.1089/cap.2014.0034. PubMed PMID: 25803321; PubMed Central PMCID: PMC4955591.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Shalev AY, Sahar T, Freedman S, Peri T, Glick N, Brandes D, Orr SP, Pitman RK. A prospective study of heart rate response following trauma and the subsequent development of posttraumatic stress disorder. Arch Gen Psychiatry. 1998;55(6):553–9. PubMed PMID: 9633675.CrossRefPubMedGoogle Scholar
  171. 171.
    Pitman RK, Sanders KM, Zusman RM, Healy AR, Cheema F, Lasko NB, Cahill L, Orr SP. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol Psychiatry. 2002;51(2):189–92. PubMed PMID: 11822998.CrossRefPubMedGoogle Scholar
  172. 172.
    Donovan E. Propranolol use in the prevention and treatment of posttraumatic stress disorder in military veterans: forgetting therapy revisited. Perspect Biol Med. 2009;53(1):61–74.CrossRefGoogle Scholar
  173. 173.
    McGhee LL, Maani CV, Garza TH, Desocio PA, Gaylord KM, Black IH. The effect of propranolol on posttraumatic stress disorder in burned service members. J Burn Care Res. 2009;30(1):92–7.  https://doi.org/10.1097/BCR.0b013e3181921f51.CrossRefPubMedGoogle Scholar
  174. 174.
    Nugent NR, Christopher NC, Crow JP, Browne L, Ostrowski S, Delahanty DL. The efficacy of early propranolol administration at reducing PTSD symptoms in pediatric injury patients: a pilot study. J Trauma Stress. 2010;23(2):282–7.  https://doi.org/10.1002/jts.20517.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Sharp S, Thomas C, Rosenberg L, Rosenberg M, Meyer W III. Propranolol does not reduce risk for acute stress disorder in pediatric burn trauma. J Trauma. 2010;68(1):193–7.  https://doi.org/10.1097/TA.0b013e3181a8b326.CrossRefPubMedGoogle Scholar
  176. 176.
    de Kloet ER, Sibug RM, Helmerhorst FM, Schmidt MV. Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev. 2005;29(2):271–81. Erratum in: Neurosci Biobehav Rev. 2006;30(4):576. Schmidt, Mathias [corrected to Schmidt, Mathias V]. PubMed PMID: 15811498.CrossRefPubMedGoogle Scholar
  177. 177.
    Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med. 2007;13(7):269–77.CrossRefPubMedGoogle Scholar
  178. 178.
    Viau V, Sharma S, Plotsky PM, Meaney MJ. Increased plasma ACTH responses to stress in nonhandled compared with handled rats require basal levels of corticosterone and are associated with increased levels of ACTH secretagogues in the median eminence. J Neurosci. 1993;13(3):1097–105.CrossRefPubMedGoogle Scholar
  179. 179.
    Weaver IC, Diorio J, Seckl JR, Szyf M, Meaney MJ. Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann N Y Acad Sci. 2004;1024:182–212.  https://doi.org/10.1196/annals.1321.099.CrossRefPubMedGoogle Scholar
  180. 180.
    Anda RF, Brown DW, Felitti VJ, Bremner JD, Dube SR, Giles WH. Adverse childhood experiences and prescribed psychotropic medications in adults. Am J Prev Med. 2007;32(5):389–94.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF. Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord. 2004;82(2):217–25.CrossRefPubMedGoogle Scholar
  182. 182.
    Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM. Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology. 2001;158(4):366–73.  https://doi.org/10.1007/s002130100701.CrossRefPubMedGoogle Scholar
  183. 183.
    Meaney MJ, Szyf M. Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci. 2005;28(9):456–63.CrossRefPubMedGoogle Scholar
  184. 184.
    Sanchez MM, Ladd CO, Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol. 2001;13(3):419–49.CrossRefPubMedGoogle Scholar
  185. 185.
    Ladd CO, Thrivikraman KV, Huot RL, Plotsky PM. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology. 2005;30(6):520–33. PubMed PMID: 15808921.CrossRefPubMedGoogle Scholar
  186. 186.
    Liberzon I, Krstov M, Young EA. Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology. 1997;22(6):443–53.CrossRefPubMedGoogle Scholar
  187. 187.
    Liberzon I, López JF, Flagel SB, Vázquez DM, Young EA. Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol. 1999;11(1):11–7. PubMed PMID: 9918224.CrossRefPubMedGoogle Scholar
  188. 188.
    Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Plotsky PM. Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biol Psychiatry. 2004;55(4):367–75.  https://doi.org/10.1016/j.biopsych.2003.10.007.CrossRefPubMedGoogle Scholar
  189. 189.
    Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277(5332):1659–62.CrossRefPubMedGoogle Scholar
  190. 190.
    Morris MC, Compas BE, Garber J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: a systematic review and meta-analysis. Clin Psychol Rev. 2012;32(4):301–15.  https://doi.org/10.1016/j.cpr.2012.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Pfohl B, Sherman B, Schlechte J, Stone R. Pituitary-adrenal axis rhythm disturbances in psychiatric depression. Arch Gen Psychiatry. 1985;42(9):897–903.CrossRefPubMedGoogle Scholar
  192. 192.
    Yehuda R. Neuroendocrine aspects of PTSD. Handb Exp Pharmacol. 2005;(169):371–403.Google Scholar
  193. 193.
    Young EA, Haskett RF, Murphy-Weinberg V, Watson SJ, Akil H. Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry. 1991;48(8):693–9.CrossRefPubMedGoogle Scholar
  194. 194.
    Heim C, Newport DJ, Heit S, Graham YP, Wilcox M, Bonsall R, et al. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA. 2000;284(5):592–7.CrossRefPubMedGoogle Scholar
  195. 195.
    Tyrka AR, Price LH, Gelernter J, Schepker C, Anderson GM, Carpenter LL. Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: effects on hypothalamic-pituitary-adrenal axis reactivity. Biol Psychiatry. 2009;66(7):681–5.  https://doi.org/10.1016/j.biopsych.2009.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Bremner JD, Vythilingam M, Vermetten E, Adil J, Khan S, Nazeer A, Afzal N, McGlashan T, Elzinga B, Anderson GM, Heninger G, Southwick SM, Charney DS. Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse. Psychoneuroendocrinology. 2003;28(6):733–50. PubMed PMID: 12812861.CrossRefPubMedGoogle Scholar
  197. 197.
    Elzinga BM, Schmahl CG, Vermetten E, van Dyck R, Bremner JD. Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD. Neuropsychopharmacology. 2003;28(9):1656–65.CrossRefPubMedGoogle Scholar
  198. 198.
    Baker DG, Ekhator NN, Kasckow JW, Dashevsky B, Horn PS, Bednarik L, Geracioti TD Jr. Higher levels of basal serial CSF cortisol in combat veterans with posttraumatic stress disorder. Am J Psychiatry. 2005;162(5):992–4. PubMed PMID: 15863803.CrossRefPubMedGoogle Scholar
  199. 199.
    Rasmusson AM, Lipschitz DS, Wang S, Hu S, Vojvoda D, Bremner JD, Southwick SM, Charney DS. Increased pituitary and adrenal reactivity in premenopausal women with posttraumatic stress disorder. Biol Psychiatry. 2001;50(12):965–77. Erratum in: Biol Psychiatry 2002;52(7):771. PubMed PMID: 11750893.CrossRefPubMedGoogle Scholar
  200. 200.
    Kellner M, Yassouridis A, Hübner R, Baker DG, Wiedemann K. Endocrine and cardiovascular responses to corticotropin-releasing hormone in patients with posttraumatic stress disorder: a role for atrial natriuretic peptide? Neuropsychobiology. 2003;47(2):102–8. PubMed PMID: 12707494.CrossRefPubMedGoogle Scholar
  201. 201.
    Yehuda R, Kahana B, Binder-Brynes K, Southwick SM, Mason JW, Giller EL. Low urinary cortisol excretion in Holocaust survivors with posttraumatic stress disorder. Am J Psychiatry. 1995;152(7):982–6. PubMed PMID: 7793468.CrossRefPubMedGoogle Scholar
  202. 202.
    Maes M, Lin A, Bonaccorso S, van Hunsel F, Van Gastel A, Delmeire L, Biondi M, Bosmans E, Kenis G, Scharpé S. Increased 24-hour urinary cortisol excretion in patients with post-traumatic stress disorder and patients with major depression, but not in patients with fibromyalgia. Acta Psychiatr Scand. 1998;98(4):328–35. PubMed PMID: 9821456.CrossRefPubMedGoogle Scholar
  203. 203.
    Pitman RK, Orr SP. Twenty-four hour urinary cortisol and catecholamine excretion in combat-related posttraumatic stress disorder. Biol Psychiatry. 1990;27(2):245–7. PubMed PMID: 2294983.CrossRefPubMedGoogle Scholar
  204. 204.
    Young EA, Breslau N. Cortisol and catecholamines in posttraumatic stress disorder: an epidemiologic community study. Arch Gen Psychiatry. 2004;61(4):394–401. PubMed PMID: 15066898.CrossRefPubMedGoogle Scholar
  205. 205.
    Luecken LJ, Dausch B, Gulla V, Hong R, Compas BE. Alterations in morning cortisol associated with PTSD in women with breast cancer. J Psychosom Res. 2004;56(1):13–5. PubMed PMID: 14987959.CrossRefPubMedGoogle Scholar
  206. 206.
    Wessa M, Rohleder N, Kirschbaum C, Flor H. Altered cortisol awakening response in posttraumatic stress disorder. Psychoneuroendocrinology. 2006;31(2):209–15. PubMed PMID: 16154709.CrossRefPubMedGoogle Scholar
  207. 207.
    Neylan TC, Brunet A, Pole N, Best SR, Metzler TJ, Yehuda R, Marmar CR. PTSD symptoms predict waking salivary cortisol levels in police officers. Psychoneuroendocrinology. 2005;30(4):373–81. PubMed PMID: 15694117.CrossRefPubMedGoogle Scholar
  208. 208.
    Heinrichs M, Wagner D, Schoch W, Soravia LM, Hellhammer DH, Ehlert U. Predicting posttraumatic stress symptoms from pretraumatic risk factors: a 2-year prospective follow-up study in firefighters. Am J Psychiatry. 2005;162(12):2276–86. PubMed PMID: 16330591.CrossRefPubMedGoogle Scholar
  209. 209.
    Goenjian AK, Yehuda R, Pynoos RS, Steinberg AM, Tashjian M, Yang RK, Najarian LM, Fairbanks LA. Basal cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. Am J Psychiatry. 1996;153(7):929–34. PubMed PMID: 8659616.CrossRefPubMedGoogle Scholar
  210. 210.
    Yehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS, Mason JW. Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am J Psychiatry. 1993;150(1):83–6. PubMed PMID: 8417586.CrossRefPubMedGoogle Scholar
  211. 211.
    Newport DJ, Heim C, Bonsall R, Miller AH, Nemeroff CB. Pituitary-adrenal responses to standard and low-dose dexamethasone suppression tests in adult survivors of child abuse. Biol Psychiatry. 2004;55(1):10–20. PubMed PMID: 14706420.CrossRefPubMedGoogle Scholar
  212. 212.
    Yehuda R, Golier JA, Halligan SL, Meaney M, Bierer LM. The ACTH response to dexamethasone in PTSD. Am J Psychiatry. 2004;161(8):1397–403. PubMed PMID: 15285965.CrossRefPubMedGoogle Scholar
  213. 213.
    Bersani FS, Wolkowitz OM, Lindqvist D, Yehuda R, Flory J, Bierer LM, Makotine I, Abu-Amara D, Coy M, Reus VI, Epel ES, Marmar C, Mellon SH. Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation. Brain Behav Immun. 2016;52:153–60.  https://doi.org/10.1016/j.bbi.2015.10.015. PubMed PMID: 26515034.CrossRefPubMedGoogle Scholar
  214. 214.
    Bruenig D, Mehta D, Morris CP, Harvey W, Lawford B, Young RM, Voisey J. Genetic and serum biomarker evidence for a relationship between TNFα and PTSD in Vietnam war combat veterans. Compr Psychiatry. 2017;74:125–33.  https://doi.org/10.1016/j.comppsych.2017.01.015. PubMed PMID: 28160694.CrossRefPubMedGoogle Scholar
  215. 215.
    Devoto C, Arcurio L, Fetta J, Ley M, Rodney T, Kanefsky R, Gill J. Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries. Cell Transplant. 2017;26(7):1169–77.  https://doi.org/10.1177/0963689717714098. PubMed PMID: 28933225; PubMed Central PMCID: PMC5657728.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Vidović A, Vilibić M, Sabioncello A, Gotovac K, Rabatić S, Folnegović-Šmalc V, Dekaris D. Changes in immune and endocrine systems in posttraumatic stress disorder - prospective study. Acta Neuropsychiatr. 2009;21(Suppl 2):46–50.  https://doi.org/10.1017/S0924270800032725. PubMed PMID: 25384870.CrossRefPubMedGoogle Scholar
  217. 217.
    Lindqvist D, Dhabhar FS, Mellon SH, Yehuda R, Grenon SM, Flory JD, Bierer LM, Abu-Amara D, Coy M, Makotkine I, Reus VI, Bersani FS, Marmar CR, Wolkowitz OM. Increased pro-inflammatory milieu in combat related PTSD - A new cohort replication study. Brain Behav Immun. 2017;59:260–4.  https://doi.org/10.1016/j.bbi.2016.09.012. PubMed PMID: 27638184.CrossRefPubMedGoogle Scholar
  218. 218.
    Himmerich H, Wolf JE, Zimmermann P, Bühler AH, Holdt LM, Teupser D, Kirkby KC, Willmund GD, Wesemann U. Serum concentrations of tumor necrosis factor-α and its soluble receptors in soldiers with and without combat-related posttraumatic stress disorder: influence of Age and Body Mass Index. Chin Med J (Engl). 2016;129(6):751–2.  https://doi.org/10.4103/0366-6999.178039. PubMed PMID: 26960383; PubMed Central PMCID: PMC4804426.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Jergović M, Bendelja K, Savić Mlakar A, Vojvoda V, Aberle N, Jovanovic T, Rabatić S, Sabioncello A, Vidović A. Circulating levels of hormones, lipids, and immune mediators in post-traumatic stress disorder - a 3-month follow-up study. Front Psychiatry. 2015;6:49.  https://doi.org/10.3389/fpsyt.2015.00049. eCollection 2015. PubMed PMID: 25926799; PubMed Central PMCID: PMC4396135.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Wang X, Xie H, Cotton AS, Duval ER, Tamburrino MB, Brickman KR, Elhai JD, Ho SS, McLean SA, Ferguson EJ, Liberzon I. Preliminary study of acute changes in emotion processing in trauma survivors with PTSD symptoms. PLoS One. 2016;11(7):e0159065.  https://doi.org/10.1371/journal.pone.0159065. eCollection 2016. PubMed PMID: 27415431; PubMed Central PMCID: PMC4944986.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Zhou X, Wu X, An Y, Fu F. Longitudinal relationships between posttraumatic stress symptoms and sleep problems in adolescent survivors following the Wenchuan earthquake in China. PLoS One. 2014;9(8):e104470.  https://doi.org/10.1371/journal.pone.0104470. eCollection 2014. PubMed PMID: 25105288; PubMed Central PMCID: PMC4126730.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Hoge EA, Brandstetter K, Moshier S, Pollack MH, Wong KK, Simon NM. Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder. Depress Anxiety. 2009;26(5):447–55.  https://doi.org/10.1002/da.20564. PubMed PMID: 19319993.CrossRefPubMedGoogle Scholar
  223. 223.
    Oganesyan LP, Mkrtchyan GM, Sukiasyan SH, Boyajyan AS. Classic and alternative complement cascades in post-traumatic stress disorder. Bull Exp Biol Med. 2009;148(6):859–61. PubMed PMID: 21116491.CrossRefPubMedGoogle Scholar
  224. 224.
    Gola H, Engler H, Sommershof A, Adenauer H, Kolassa S, Schedlowski M, Groettrup M, Elbert T, Kolassa IT. Posttraumatic stress disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by peripheral blood mononuclear cells. BMC Psychiatry. 2013;13:40.  https://doi.org/10.1186/1471-244X-13-40. PubMed PMID: 23360282; PubMed Central PMCID: PMC3574862.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Hammad SM, Truman JP, Al Gadban MM, Smith KJ, Twal WO, Hamner MB. Altered blood sphingolipidomics and elevated plasma inflammatory cytokines in combat veterans with post-traumatic stress disordER. Neurobiol Lipids. 2012;10:2. PubMed PMID: 24403911; PubMed Central PMCID: PMC3882130.PubMedGoogle Scholar
  226. 226.
    Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, Salum G, Magalhães PV, Kapczinski F, Kauer-Sant’Anna M. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2015;2(11):1002–12.  https://doi.org/10.1016/S2215-0366(15)00309-0. Review. PubMed PMID: 26544749.CrossRefPubMedGoogle Scholar
  227. 227.
    Tursich M, Neufeld RW, Frewen PA, Harricharan S, Kibler JL, Rhind SG, Lanius RA. Association of trauma exposure with proinflammatory activity: a transdiagnostic meta-analysis. Transl Psychiatry. 2014;4:e413.  https://doi.org/10.1038/tp.2014.56.CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    de Kloet CS, Vermetten E, Bikker A, Meulman E, Geuze E, Kavelaars A, et al. Leukocyte glucocorticoid receptor expression and immunoregulation in veterans with and without post-traumatic stress disorder. Mol Psychiatry. 2007;12(5):443–53.CrossRefPubMedGoogle Scholar
  229. 229.
    de Kloet CS, Vermetten E, Heijnen CJ, Geuze E, Lentjes EG, Westenberg HG. Enhanced cortisol suppression in response to dexamethasone administration in traumatized veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology. 2007;32(3):215–26.CrossRefPubMedGoogle Scholar
  230. 230.
    Rohleder N, Joksimovic L, Wolf JM, Kirschbaum C. Hypocortisolism and increased glucocorticoid sensitivity of pro-Inflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biol Psychiatry. 2004;55(7):745–51. PubMed PMID: 15039004.CrossRefPubMedGoogle Scholar
  231. 231.
    Zieker J, Zieker D, Jatzko A, Dietzsch J, Nieselt K, Schmitt A, Bertsch T, Fassbender K, Spanagel R, Northoff H, Gebicke-Haerter PJ. Differential gene expression in peripheral blood of patients suffering from post-traumatic stress disorder. Mol Psychiatry. 2007;12(2):116–8. PubMed PMID: 17252001.CrossRefPubMedGoogle Scholar
  232. 232.
    Yehuda R, Bierer LM, Sarapas C, Makotkine I, Andrew R, Seckl JR. Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. Psychoneuroendocrinology. 2009;34(9):1304–13.  https://doi.org/10.1016/j.psyneuen.2009.03.018. PubMed PMID: 19411143; PubMed Central PMCID: PMC2785023.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Sarapas C, Cai G, Bierer LM, Golier JA, Galea S, Ising M, Rein T, Schmeidler J, Müller-Myhsok B, Uhr M, Holsboer F, Buxbaum JD, Yehuda R. Genetic markers for PTSD risk and resilience among survivors of the World Trade Center attacks. Dis Markers. 2011;30(2–3):101–10.  https://doi.org/10.3233/DMA-2011-0764. PubMed PMID: 21508514. PubMed Central PMCID: PMC3825240.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Mehta D, Gonik M, Klengel T, et al. Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch Gen Psychiatry. 2011;68(9):901–10.CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT, Risbrough VB, Baker DG, O’Connor DT, Nievergelt CM, Woelk CH. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol Psychiatry. 2015;20(12):1538–45.  https://doi.org/10.1038/mp.2015.9. PubMed PMID: 25754082; PubMed Central PMCID: PMC4565790.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of MichiganAnn ArborUSA

Personalised recommendations