Advertisement

Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding

  • Bhaskar K. Chatterjee
  • Sarita Puri
  • Ashima Sharma
  • Ashutosh Pastor
  • Tapan K. Chaudhuri
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 13)

Abstract

During heat shock conditions a plethora of proteins are found to play a role in maintaining cellular homeostasis. They play diverse roles from folding of non-native proteins to the proteasomal degradation of harmful aggregates. A few out of these heat shock proteins (Hsp) help in the folding of non-native substrate proteins and are termed as molecular chaperones. Various structural and functional adaptations make them work efficiently under both normal and stress conditions. These adaptations involve transitions to oligomeric structures, thermal stability, efficient binding affinity for substrates and co-chaperones, elevated synthesis during shock conditions, switching between ‘holding’ and ‘folding’ functions etc. Their ability to function under various kinds of stress conditions like heat shock, cancers, neurodegenerative diseases, and in burdened cells due to recombinant protein production makes them therapeutically and industrially important biomolecules.

Keywords

Chaperone assisted folding Heat shock Molecular chaperones Protein folding Structure-function of chaperones 

Notes

Acknowledgments

The authors acknowledge the financial assistance from IIT Delhi and infrastructural facility from IIT Delhi, India. AS and AP acknowledge financial assistance from CSIR, Government of India for providing fellowships in their doctoral course programme. SP acknowledge financial assistance from UGC, Government of India for providing fellowships in their doctoral course programme. BKC acknowledges IIT Delhi for providing fellowship in the doctoral course program.

References

  1. Abravaya, K., et al. (1992). The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes and Development, 6(7), 1153–1164.PubMedCrossRefGoogle Scholar
  2. Agard, D. (1993). To fold or not to fold. Science, 260(5116), 1903–1904.PubMedCrossRefGoogle Scholar
  3. Agashe, V. R., et al. (2004). Function of trigger factor and DnaK in multidomain protein folding. Cell, 117(2), 199–209.PubMedCrossRefGoogle Scholar
  4. Akerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: Integrators of cell stress, development and lifespan. Nature Reviews. Molecular Cell Biology, 11(8), 545–555.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali, M. M. U., et al. (2006). Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature, 440(7087), 1013–1017.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Altieri, D. C., et al. (2012). TRAP-1, the mitochondrial Hsp90. Biochimica et Biophysica Acta-Molecular Cell Research, 1823(3), 767–773.CrossRefGoogle Scholar
  7. Amin, J., Ananthan, J., & Voellmy, R. (1988). Key features of heat shock regulatory elements. Molecular and Cellular Biology, 8(9), 3761–3769.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bakthisaran, R., Tangirala, R., & Rao, C. M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta - Proteins & Proteomics, 1854(4), 291–319.CrossRefGoogle Scholar
  9. Balch, W. E., et al. (2008). Adapting proteostasis for disease intervention. Science, 319(5865), 916–919.PubMedCrossRefGoogle Scholar
  10. Baler, R., Welch, W. J., & Voellmy, R. (1992). Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. The Journal of Cell Biology, 117(6), 1151–1159.PubMedCrossRefGoogle Scholar
  11. Baler, R., Dahl, G., & Voellmy, R. (1993). Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Molecular and Cellular Biology, 13(4), 2486–2496.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baumann, F., Milisav, I., Neupert, W., & Herrmann, J. M. (2000). Ecm10, a novel hsp70 homolog in the mitochondrial matrix of the yeast Saccharomyces Cerevisiae. FEBS Letters, 487(2), 307–312.PubMedCrossRefGoogle Scholar
  13. van den Berg, B. (1999). Effects of macromolecular crowding on protein folding and aggregation. The EMBO Journal, 18(24), 6927–6933.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bergerat, A., et al. (1997). An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 386, 414–417.PubMedCrossRefGoogle Scholar
  15. Bharadwaj, S., Ali, A., & Ovsenek, N. (1999). Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Molecular and Cellular Biology, 19(12), 8033–8041.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bose, S., et al. (1996). Chaperone function of Hsp90-associated proteins. Science, 274(5293), 1715–1717.PubMedCrossRefGoogle Scholar
  17. Boston, R. S., Viitanen, P. V., & Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Molecular Biology, 32(1), 191–222.PubMedCrossRefGoogle Scholar
  18. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & andSigler, P. B. (1994). The crystal structure of bacterial chaperonin GroEL at 2.8Ao. Nature, 371(6498), 578–586.PubMedCrossRefGoogle Scholar
  19. Braig, K., Adams, P. D., & Brunger, A. T. (1995). Conformational variability in the refined structure of the chaperonin GroEL at 2.8Ao resolution. Nature Structural and Molecular Biology, 2(12), 1083–1094.CrossRefGoogle Scholar
  20. Brodsky, J. L., Goeckeler, J., & Schekman, R. (1995). BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proceedings of the National Academy of Sciences, 92(21), 9643–9646.CrossRefGoogle Scholar
  21. Brychzy, A., et al. (2003). Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. The EMBO Journal, 22(14), 3613–3623.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Buchberger, A., Bukau, B., & Sommer, T. (2010). Protein quality control in the cytosol and the endoplasmic reticulum: Brothers in arms. Molecular Cell, 40(2), 238–252.PubMedCrossRefGoogle Scholar
  23. Bukau, B. (1993). Regulation of the Escherichia Coli heat-shock response. Molecular Microbiology, 9(4), 671–680.PubMedCrossRefGoogle Scholar
  24. Burton, B. M., & Baker, T. A. (2005). Remodeling protein complexes: Insights from the AAA+ unfoldase ClpX and mu transposase. Protein Science, 14(8), 1945–1954.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Carrascosa, L., Muga, A., & Valpuesta, M. (1998). GroEL under Heat-Shock. The Journal of Biological Chemistry, 273(49), 32587–32594.PubMedCrossRefGoogle Scholar
  26. Chalovich, J. M., & Eisenberg, E. (2012). A proteomic screen identified stress-induced chaperone proteins as targets of Akt phosphorylation in Mesangial cells. Biophysical Chemistry, 257(5), 2432–2437.Google Scholar
  27. Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259–284.PubMedCrossRefGoogle Scholar
  28. Chaston, J. J., et al. (2016). Structural and functional insights into the evolution and stress adaptation of type II Chaperonins. Structure, 24(3), 364–374.PubMedCrossRefGoogle Scholar
  29. Chaudhuri, T. K., Farr, G. W., Fenton, W. A., Rospert, S., & Horwich, A. L. (2001). GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell, 107(2), 235–246.PubMedCrossRefGoogle Scholar
  30. Chen, S., & Smith, D. F. (1998). Hop as an adaptor in the heat shock protein 70 (Hsp70) and Hsp90 chaperone machinery. The Journal of Biological Chemistry, 273(52), 35194–35200.PubMedCrossRefGoogle Scholar
  31. Chen, Q., et al. (1990). Accumulation, stability, and localization of a major chloroplast heat-shock protein. The Journal of Cell Biology, 110(6), 1873–1883.PubMedCrossRefGoogle Scholar
  32. Chen, C. F., et al. (1996). A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Molecular and Cellular Biology, 16(9), 4691–4699.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen, S., et al. (1998). Differential interactions of p23 and the TPR-containing proteins hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress & Chaperones, 3(2), 118–129.CrossRefGoogle Scholar
  34. Cheng, M. Y., et al. (1989). Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature, 337(6208), 620–625.PubMedCrossRefGoogle Scholar
  35. Cintron, N. S., & Toft, D. (2006). Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. The Journal of Biological Chemistry, 281(36), 26235–26244.PubMedCrossRefGoogle Scholar
  36. Cotto, J., Kline, M., & Morimoto, R. I. (1996). Activation of heat shock factor 1 DNA binding precedes stress- induced serine phosphorylation. The Journal of Biological Chemistry, 271(7), 3355–3358.PubMedCrossRefGoogle Scholar
  37. Cox, J. S., & Walter, P. (1996). A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell, 87(3), 391–404.PubMedCrossRefGoogle Scholar
  38. Cox, M. B., et al. (2007). FK506-binding protein 52 phosphorylation: A potential mechanism for regulating steroid hormone receptor activity. Molecular Endocrinology, 21(12), 2956–2967.PubMedCrossRefGoogle Scholar
  39. Csermely, P., et al. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79(2), 129–168.CrossRefGoogle Scholar
  40. Cunningham, C. N., et al. (2012). The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis. Protein Science, 21, 1162–1171.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dahiya, V., & Chaudhuri, T. K. (2014). GroEL/ES accelerates the refolding of a multi-domain protein through modulating on pathway intermediates. The Journal of Biological Chemistry, 289(1), 286–298.PubMedCrossRefGoogle Scholar
  42. Daniels, R., et al. (2003). N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Molecular Cell, 11(1), 79–90.PubMedCrossRefGoogle Scholar
  43. Das, A. K., et al. (1998). The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions. The EMBO Journal, 17(5), 1192–1199.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ditzel, L., Lowe, J., Stock, D., Stetter, K. O., Huber, H., Huber, R., & Steinbacher, S. (1998). Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell, 93(1), 125–138.PubMedCrossRefGoogle Scholar
  45. Dougherty, J., et al. (1987). Identification of the 90Kda substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochimica et Biophysica Acta, 927, 74–80.PubMedCrossRefGoogle Scholar
  46. Ellis, R. J. (2001). Macromolecular crowding: Obvious but underappreciated. Trends in Biochemical Sciences, 26(10), 597–604.PubMedCrossRefGoogle Scholar
  47. Ellis, R. J., & van der Vies, S. M. (1991). Molecular Chaperones. Annual Review of Biochemistry, 60(1), 321–347.PubMedCrossRefGoogle Scholar
  48. Ewalt, K. L., Hendrick, J. P., Houry, W. A., & Hartl, F. U. (1997). In Vivo observation of polypeptide flux through the bacterial chaperonin system. Cell, 90(3), 491–500.PubMedCrossRefGoogle Scholar
  49. Eyles, S. J., & Gierasch, L. M. (2010). Nature’s molecular sponges: Small heat shock proteins grow into their chaperone roles. Proceedings of the National Academy of Sciences, 107(7), 2727–2728.CrossRefGoogle Scholar
  50. Felts, S. J., et al. (2000). Protein structure and folding: The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties the hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. The Journal of Biological Chemistry, 275(5), 3305–3312.PubMedCrossRefGoogle Scholar
  51. Ferbitz, L., et al. (2004). Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature, 431(7008), 590–596.PubMedCrossRefGoogle Scholar
  52. Fenton, W. A., & Horwich, A. L. (1997). Review, GroEL mediated protein folding. Protein Science, 6, 743–760.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fenton, W. A., Kashi, Y., Furtak, K., & Horwich, A. L. (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371(6498), 614–619.PubMedCrossRefGoogle Scholar
  54. Figueiredo, L., Klunker, D., Ang, D., Naylor, D. J., Kerner, M. J., Georgopoulos, C., Hartl, F. U., & Hayer-Hartl, M. (2004). Functional characterization of an archaeal GroEL/GroES chaperonin system: Significance of substrate encapsulation. The Journal of Biological Chemistry, 279(2), 1090–1099.PubMedCrossRefGoogle Scholar
  55. Fiorenza, M. T., et al. (1995). Complex expression of murine heat shock transcription factors. Nucleic Acids Research, 23(3), 467–474.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Forouzan, D., Ammelburg, M., Hobel, C. F., Ströh, L. J., Sessler, N., Martin, J., & Lupas, A. N. (2012). The archaeal proteasome is regulated by a network of AAA ATPases. The Journal of Biological Chemistry, 287(46), 39254–39262.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Franck, E., et al. (2004). Evolutionary diversity of vertebrate small heat shock proteins. Journal of Molecular Evolution, 59(6), 792–805.PubMedCrossRefGoogle Scholar
  58. Freeman, B. C., & Morimoto, R. I. (1996). The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. The EMBO Journal, 15(12), 2969–2979.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Freeman, B. C., et al. (1995). Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. The EMBO Journal, 14(10), 2281–2292.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Freeman, B. C., Toft, D. O., & Morimoto, R. I. (1996). Molecular chaperone machines: Chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science, 274, 1718–1720.PubMedCrossRefGoogle Scholar
  61. Freeman, B. C., et al. (2000). The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes and Development, 14(4), 422–434.PubMedPubMedCentralGoogle Scholar
  62. Frydman, J. (2001). Folding of newly translated proteins in vivo: The role of molecular chaperones. Annual Review of Biochemistry, 70, 603–647.PubMedCrossRefGoogle Scholar
  63. Fulda, S., et al. (2010). Cellular stress responses: Cell survival and cell death. Int J Cell Biol, 2010(2010), 1–23.Google Scholar
  64. Gaiser, A. M., Kretzschmar, A., & Richter, K. (2010). Cdc37-Hsp90 complexes are responsive to nucleotide-induced conformational changes and binding of further cofactors. The Journal of Biological Chemistry, 285(52), 40921–40932.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Georgopoulos, C., Liberek, K., Zylicz, M., & Ang, D. (1994). Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. Biol Heat Shock Prot Mol Chaperones, 209–249.Google Scholar
  66. Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell, 94(1), 73–82.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Golbik, R., Zahn, R., Harding, S. E., & Alan, F. R. (1998). Thermodynamic stability and folding of GroEL minichaperones. Journal of Molecular Biology, 276, 505–515.PubMedCrossRefGoogle Scholar
  68. Goloubinoff, P., Gatenby, A. A., & Lorimer, G. H. (1989). GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature, 337(6202), 44–47.PubMedCrossRefGoogle Scholar
  69. Goloubinoff, P., et al. (1999). Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proceedings of the National Academy of Sciences, 96(24), 13732–13737.CrossRefGoogle Scholar
  70. Grallert, H., Rutkat, K., & Buchner, J. (1998). GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. The Journal of Biological Chemistry, 273(50), 33305–33310.PubMedCrossRefGoogle Scholar
  71. Graner, M. W., Lillehei, K. O., & Katsanis, E. (2014). Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines. Frontiers in Oncology, 4(379), 1–12.Google Scholar
  72. Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305(5684), 626–629.PubMedCrossRefGoogle Scholar
  73. Gromiha, M. M., & Selvaraj, S. (2004). Inter-residue interactions in protein folding and stability. Progress in Biophysics and Molecular Biology, 86(2), 235–277.PubMedCrossRefGoogle Scholar
  74. Gross, C. A. (1996). Function and regulation of the heat shock proteins in Escherichia coli and Salmonella cellular and molecular biology. American Society for Microbiology, 1382–1399.Google Scholar
  75. Guisbert, E., Herman, C., Lu, C. Z., & Gross, C. A. (2004). A chaperone network controls the heat shock response in E. Coli. Genes & Development, 18(22), 2812–2821.CrossRefGoogle Scholar
  76. Guo, Y., et al. (2001). Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. The Journal of Biological Chemistry, 276(49), 45791–45799.PubMedCrossRefGoogle Scholar
  77. Guy, C. L., & Li, Q.-B. (1998). The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell, 10(4), 539–556.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381(6583), 571–580.PubMedCrossRefGoogle Scholar
  79. Hartl, F. U., Bracher, A., & Hartl, M. H. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 325–332.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295(5561), 1852–1858.PubMedCrossRefGoogle Scholar
  81. Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., Saibil, H. R., & Buchner, J. (1999). Hsp26: A temperature-regulated chaperone. The EMBO Journal, 18(23), 6744–6751.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Haslbeck, M., Braun, N., Stromer, T., Richter, B., Model, N., Weinkauf, S., & Buchner, J. (2004a). Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. The EMBO Journal, 23(3), 638–649.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Haslbeck, M., Ignatiou, A., Saibil, H., Helmich, S., Frenzl, E., Stromer, T., & Buchner, J. (2004b). A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. Journal of Molecular Biology, 343(2), 445–455.PubMedCrossRefGoogle Scholar
  84. Hayer-Hartl, M., Bracher, A., & Hartl, F. U. (2016). The GroEL-GroES chaperonin machine: A nano-cage for protein folding. Trends in Biochemical Sciences, 41(1), 62–76.PubMedCrossRefGoogle Scholar
  85. Helenius, A., & Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry, 73, 1019–1049.PubMedCrossRefGoogle Scholar
  86. Hemmingsen, S. M., et al. (1988). Homologous plant and bacterial protein chaperone oligomeric protein assembly. Nature, 333, 330–334.PubMedCrossRefGoogle Scholar
  87. Hendrick, J. P., & Hartl, F. U. (1993). Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry, 62(1), 349–384.PubMedCrossRefGoogle Scholar
  88. Herman, C., & Gross, C. A. (2000). Heat stress. In J. Lederberg (Ed.), Encyclopedia of microbiology (pp. 598–606). Academic Press.Google Scholar
  89. Hessling, M., Richter, K., & Buchner, J. (2009). Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nature Structural & Molecular Biology, 16(3), 287–293.CrossRefGoogle Scholar
  90. Hietakangas, V., & Sistonen, L. (2006). Regulation of the heat shock response by heat shock transcription factors. Chaperones, 1–34.Google Scholar
  91. Hightower, L. E. (1991). Heat shock, stress proteins, chaperones, and Proteotoxicity. Cell, 66(2), 191–197.PubMedCrossRefGoogle Scholar
  92. Hill, J. E., & Hemmingsen, S. M. (2001). Arabidopsis Thaliana type I and II chaperonins. Cell Stress and Chaperones, 6(3), 190–200.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Horwich, A. L., Fenton, W. A., Chapman, E., & Farr, G. W. (2007). Two families of chaperonin: Physiology and mechanism. Annual Review of Cell and Developmental Biology, 23, 115–145.PubMedCrossRefGoogle Scholar
  94. Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N., & Furtak, K. (1993). Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL. Cell, 74(5), 909–917.PubMedCrossRefGoogle Scholar
  95. Hundley, H. A. (2005). Human Mpp11 J protein: Ribosome-tethered molecular chaperones are ubiquitous. Science, 308(5724), 1032–1034.PubMedCrossRefGoogle Scholar
  96. Imai, J., & Yahara, I. (2000). Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Molecular and Cellular Biology, 20(24), 9262–9270.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Jakob, U., Gaestel, M., Engel, K., & Buchner, J. (1993). Small heat shock proteins are molecular chaperones. The Journal of Biological Chemistry, 268(3), 1517–1520.PubMedGoogle Scholar
  98. Janowsky, B., Major, T., Knapp, K., & Voos, W. (2006). The disaggregation activity of the mitochondrial ClpB homolog Hsp78 maintains Hsp70 function during heat stress. Journal of Molecular Biology, 357(3), 793–807.CrossRefGoogle Scholar
  99. Johnson, J. L., & Toft, D. O. (1994). A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. The Journal of Biological Chemistry, 269(40), 24989–24993.PubMedGoogle Scholar
  100. Johnson, J. L., & Toft, D. O. (1995). Binding of p23 and hsp90 during assembly with the progesterone receptor. Molecular Endocrinology, 9(6), 670–678.PubMedGoogle Scholar
  101. Johnson, J. L., et al. (1994). Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Molecular and Cellular Biology, 14(3), 1956–1963.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Johnson, B. D., et al. (1998). Hop modulates hsp70 / hsp90 interactions in protein folding. The Journal of Biological Chemistry, 273(6), 3679–3686.PubMedCrossRefGoogle Scholar
  103. Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews. Molecular Cell Biology, 11(8), 579–592.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kang, B. H., et al. (2007). Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell, 131(2), 257–270.PubMedCrossRefGoogle Scholar
  105. Kappé, G., et al. (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress and Chaperones, 8(1), 53–61.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kelley, P. M., & Schlesinger, M. J. (1982). Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Molecular and Cellular Biology, 2(3), 267–274.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Klumpp, M., Baumeister, W., & Essen, L. O. (1997). Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell, 91(2), 263–270.PubMedCrossRefGoogle Scholar
  108. Kourtis, N., & Tavernarakis, N. (2011). Cellular stress response pathways and ageing: Intricate molecular relationships. The EMBO Journal, 30(13), 2520–2531.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kramer, G., Boehringer, D., Ban, N., & Bukau, B. (2009). The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Structural & Molecular Biology, 16(6), 589–597.CrossRefGoogle Scholar
  110. Kriehuber, T., et al. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins. The FASEB Journal, 24(10), 3633–3642.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Krishna, P., & Gloor, G. (2001). The Hsp90 family of proteins in Arabidopsis Thaliana. Cell Stress and Chaperones, 6(3), 238–246.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kültz, D. (2004). Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology, 67(1), 225–257.CrossRefGoogle Scholar
  113. Langer, T., et al. (1992). Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 356(6371), 683–689.PubMedCrossRefGoogle Scholar
  114. Lee, U., et al. (2007). The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development. The Plant Journal, 49(1), 115–127.PubMedCrossRefGoogle Scholar
  115. Lees-Miller, S. P., & Anderson, C. W. (1989). Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. The Journal of Biological Chemistry, 264(5), 2431–2437.PubMedGoogle Scholar
  116. Leitner, A., Joachimiak, L. A., Bracher, A., Mönkemeyer, L., Walzthoeni, T., Chen, B., Pechmann, S., Holmes, S., Cong, Y., & Ma, B. (2012). The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure, 20(5), 814–825.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Leskovar, A., et al. (2008). The ATPase cycle of the mitochondrial Hsp90 analog trap1. The Journal of Biological Chemistry, 283(17), 11677–11688.PubMedCrossRefGoogle Scholar
  118. Levy-Rimler, G., et al. (2002). Type I chaperonins: Not all are created equal. FEBS Letters, 529(1), 1–5.PubMedCrossRefGoogle Scholar
  119. Li, J., Richter, K., & Buchner, J. (2011). Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nature Structural and Molecular Biology, 18(1), 61–66.PubMedCrossRefGoogle Scholar
  120. Li, J., Soroka, J., & Buchner, J. (2012). The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta – Molecular Cell Research, 1823(3), 624–635.CrossRefGoogle Scholar
  121. Liberek, K., Galitski, T. P., Zylicz, M., & Georgopoulos, C. (1992). The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proceedings of the National Academy of Sciences, 89, 3516–3520.CrossRefGoogle Scholar
  122. Lin, Z., & Rye, H. S. (2006). GroEL mediated protein folding: Making the impossible, possible. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 211–239.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Lin, B. L., et al. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis Thaliana. Cell Stress and Chaperones, 6(3), 201–208.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55(1), 1151–1191.PubMedCrossRefGoogle Scholar
  125. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22(1), 631–677.PubMedCrossRefGoogle Scholar
  126. Lizuka, R., & Funatsu, T. (2016). Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Biophy and Physicobiol, 13, 63–69.CrossRefGoogle Scholar
  127. Llorca, O., Galán, A., Carrascosa, J. L., Muga, A., & Valpuesta, J. M. (1998). GroEL under heat-shock. Journal of Biological Chemistry, 273(49), 32587–32594.PubMedCrossRefGoogle Scholar
  128. Lopez, T., Dalton, K., & Frydman, J. (2016). The mechanism and function of group II chaperonins. Journal of Molecular Biology, 427(18), 2919–2930.CrossRefGoogle Scholar
  129. Lyman, S. K., & Schekman, R. (1995). Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces Cerevisiae. The Journal of Cell Biology, 131(5), 1163–1171.PubMedCrossRefGoogle Scholar
  130. Ma, Y., & Hendershot, L. M. (2004). ER chaperone functions during normal and stress conditions. Journal of Chemical Neuroanatomy, 28(1–2), 51–65.PubMedCrossRefGoogle Scholar
  131. MacLean, M., & Picard, D. (2003). Cdc37 goes beyond Hsp90 and kinases. Cell Stress & Chaperones, 8(2), 114–119.CrossRefGoogle Scholar
  132. Mani, N., et al. (2016). Multiple oligomeric structures of a bacterial small heat shock protein. Scientific Reports, 6, 1–12.CrossRefGoogle Scholar
  133. Martinez-Hackert, E., & Hendrickson, W. A. (2009). Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell, 138(5), 923–934.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Maruyama, T., Suzuki, R., & Furutani, M. (2004). Archaeal peptidylprolyl cis-trans isomerases (PPIases) update. Frontiers in Bioscience, 9, 1680–1700.PubMedCrossRefGoogle Scholar
  135. Mayer, M. P. (2010). Gymnastics of molecular chaperones. Molecular Cell, 39(3), 321–331.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Mayer, M. P., Schröder, H., Rüdiger, S., Paal, K., Laufen, T., & Bukau, B. (2000). Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nature Structural Biology, 7, 586–593.PubMedCrossRefGoogle Scholar
  137. McClellan, A. J., et al. (2007). Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell, 131(1), 121–135.PubMedCrossRefGoogle Scholar
  138. McCracken, A. A., & Brodsky, J. L. (1996). Assembly of ER-associated protein degradation in vitro: Dependence on cytosol, calnexin, and ATP. The Journal of Cell Biology, 132(3), 291–298.PubMedCrossRefGoogle Scholar
  139. McLaughlin, S. H., et al. (2006). The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. Journal of Molecular Biology, 356(3), 746–758.PubMedCrossRefGoogle Scholar
  140. Merz, F., et al. (2008). Molecular mechanism and structure of trigger factor bound to the translating ribosome. The EMBO Journal, 27(11), 1622–1632.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Meyer, A. S., et al. (2003a). Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell, 113(3), 369–381.PubMedCrossRefGoogle Scholar
  142. Meyer, P., et al. (2003b). Structural and functional analysis of the middle segment of Hsp90: Implications for ATP hydrolysis and client protein and Cochaperone interactions. Molecular Cell, 11, 647–658.PubMedCrossRefGoogle Scholar
  143. Mickler, M., et al. (2009). The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nature Structural and Molecular Biology, 16(3), 281–286.PubMedCrossRefGoogle Scholar
  144. Miemyk, J. (2017). The 70 kDa stress-related proteins as molecular chaperones. Trends in Plant Science, 2(5), 180–187.CrossRefGoogle Scholar
  145. Minami, Y., & Minami, M. (1999). Hsc70/Hsp40 chaperone system mediates the Hsp90-dependent refolding of firefly luciferase. Genes to Cells, 4(12), 721–729.PubMedCrossRefGoogle Scholar
  146. Morange, M., & Bensaude, O. (1991). Heat shock increases turnover of 90 groups in HeLa cells. Intl J Biol Stress, l(2), 359–362.Google Scholar
  147. Morimoto, R. I., Tissieres, A., & Georgopoulos, C. (1994). Progress and perspectives on the biology of heat shock proteins and molecular chaperones. Biol Heat Shock Prot Mol Chaperones, 1–30.Google Scholar
  148. Morimoto, R. I., Kroeger, P. E., & Cotto, J. J. (1996). The transcriptional regulation of heat shock genes: A plethora of heat shock factors and regulatory conditions. In U. Feige et al. (Eds.), Stress-Inducible Cellular Responses (Vol. 77, pp. 139–163). Basel: Birkhäuser Basel EXS.CrossRefGoogle Scholar
  149. Muchowski, P. J., et al. (1999). ATP and the core “alpha-Crystallin” domain of the small heat-shock protein alphaB-crystallin. The Journal of Biological Chemistry, 274(42), 30190–30195.PubMedCrossRefGoogle Scholar
  150. Mujacic, M., Bader, M. W., & Baneyx, F. (2004). Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Molecular Microbiology, 51, 849–859.PubMedCrossRefGoogle Scholar
  151. Nair, S. C., et al. (1997). Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor. Molecular and Cellular Biology, 17(2), 594–603.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Nishikawa, S., & Endo, T. (1997). The yeast Jem1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. The Journal of Biological Chemistry, 272(20), 12889–12892.PubMedCrossRefGoogle Scholar
  153. Normington, K., Kohno, K., Kozutsumi, Y., Gething, M. J., & Sambrook, J. (1989). S. Cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell, 57(7), 1223–1236.PubMedCrossRefGoogle Scholar
  154. Obermann, W. M. J., et al. (1998). In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. The Journal of Cell Biology, 143(4), 901–910.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Otto, H., et al. (2005). The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proceedings of the National Academy of Sciences, 102(29), 10064–10069.CrossRefGoogle Scholar
  156. Panaretou, B., et al. (1998). ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. The EMBO Journal, 17(16), 4829–4836.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Panaretou, B., et al. (2002). Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Aha1. Molecular Cell, 10(6), 1307–1318.PubMedCrossRefGoogle Scholar
  158. Patricia Hernández, M., Chadli, A., & Toft, D. O. (2002). HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. The Journal of Biological Chemistry, 277(14), 11873–11881.PubMedCrossRefGoogle Scholar
  159. Paul, S., Singh, C., Mishra, S., & Chaudhuri, T. K. (2007). The 69-kDa Escherichia Coli Maltodextrin Glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES assisted folding. The FASEB Journal, 21(11), 2874–2885.PubMedCrossRefGoogle Scholar
  160. Pearl, L. H. (2016). Review: The HSP90 molecular chaperone - an enigmatic ATPase. Biopolymers, 105(8), 594–607.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Pearl, L. H., & Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 75(1), 271–294.PubMedCrossRefGoogle Scholar
  162. Pelham, H. R. B. (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 46(7), 959–961.PubMedCrossRefGoogle Scholar
  163. Pellecchia, M., Montgomery, D. L., Stevens, S. Y., Vander Kooi, C. W., Feng, H., Gierasch, L. M., & Zuiderweg, E. R. P. (2000). Structural insights into substrate binding by the molecular chaperone DnaK. Nature Structural Biology, 7, 298–303.PubMedCrossRefGoogle Scholar
  164. Pirkkala, L., Nykänen, P., & Sistonen, L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 15(7), 1118–1131.PubMedCrossRefGoogle Scholar
  165. Pirkl, F., & Buchner, J. (2001). Functional analysis of the Hsp90-associated human peptidylprolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. Journal of Molecular Biology, 308(4), 795–806.PubMedCrossRefGoogle Scholar
  166. Prändl, R., et al. (1998). HSF3, a new heat shock factor from Arabidopsis Thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Molecular & General Genetics, 258(3), 269–278.CrossRefGoogle Scholar
  167. Prodromou, C., et al. (1999). Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. The EMBO Journal, 18(3), 754–762.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Prodromou, C., et al. (2000). The ATPase cycle of Hsp90 drives a molecular ` clamp via transient dimerization of the N-terminal domains. The EMBO Journal, 19(16), 4383–4392.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Puri, S., & Chaudhuri, T. K. (2017). Folding and unfolding pathway of chaperonin GroEL monomer and elucidation of thermodynamic parameters. International Journal of Biological Macromolecules, 96, 713–726.PubMedCrossRefGoogle Scholar
  170. Rajaraman, K., et al. (2001). Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Letters, 497(2–3), 118–123.PubMedCrossRefGoogle Scholar
  171. Rani, S., Srivastava, A., Kumar, M., & Goel, M. (2016). CrAgDb - a database of annotated chaperone repertoire in archaeal genomes. FEMS Microbiology Letters, 363(6), 1–6.CrossRefGoogle Scholar
  172. Ranson, N. A., Dunster, N. J., Burston, S. G., & Clarke, A. R. (1995). Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. Journal of Molecular Biology, 250(5), 581–586.PubMedCrossRefGoogle Scholar
  173. Ratzke, C., et al. (2010). Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proceedings of the National Academy of Sciences, 107(37), 16101–16106.CrossRefGoogle Scholar
  174. Ray, D., et al. (2016). Plant stress response: Hsp70 in the spotlight. In A. A. A. Asea, P. Kaur, & S. K. Calderwood (Eds.), Heat shock Prot plants, Heat shock proteins (Vol. 10, pp. 123–147). Cham: Springer.CrossRefGoogle Scholar
  175. Retzlaff, M., et al. (2010). Asymmetric activation of the Hsp90 dimer by its Cochaperone Aha1. Molecular Cell, 37(3), 344–354.PubMedCrossRefGoogle Scholar
  176. Rice, L. M., et al. (2008). Article multiple conformations of E .coli Hsp90 in solution : Insights into the conformational dynamics of Hsp90. Structure, 16(5), 755–765.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Richter, K., Walter, S., & Buchner, J. (2004). The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. Journal of Molecular Biology, 342(5), 1403–1413.PubMedCrossRefGoogle Scholar
  178. Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: Life on the verge of death. Molecular Cell, 40(2), 253–266.PubMedCrossRefGoogle Scholar
  179. Ritossa, F. (1996). Discovery of the heat shock response. Cell Stress and Chaperones, 1(2), 97–98.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Roe, S. M., et al. (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics Radicicol and Geldanamycin. Journal of Medicinal Chemistry, 42(2), 260–266.PubMedCrossRefGoogle Scholar
  181. Roe, S. M., et al. (2004). The mechanism of Hsp90 regulation by the protein kinase-specific Cochaperone p50cdc37. Cell, 116(1), 87–98.PubMedCrossRefGoogle Scholar
  182. Rowley, N., Prip-Buus, C., Westermann, B., Brown, C., Schwarz, E., Barreil, B., & Neupertt, W. (1994). Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell, 77(2), 249–259.PubMedCrossRefGoogle Scholar
  183. Rudiger, S., Buchberger, A., & Bukau, B. (1997). Interaction of Hsp70 chaperones with substrates. Nature, 4(5), 686–689.Google Scholar
  184. Sadler, I., Chiang, A., Kurihara, T., Rothblatt, J., Way, J., & Silver, P. (1989). A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. The Journal of Cell Biology, 109(6), 2665–2675.PubMedCrossRefGoogle Scholar
  185. Sakikawa, C., Taguchi, H., Makino, Y., & Yoshida, M. (1999). On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. Journal of Biological Chemistry, 274(30), 21251–21256.PubMedCrossRefGoogle Scholar
  186. Santoro, N., Johansson, N., & Thiele, D. J. (1998). Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heats hock transcription factor. Molecular and Cellular Biology, 18(11), 6340–6352.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sarge, K. D., Murphy, S. P., & Morimoto, R. I. (1993). Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Molecular and Cellular Biology, 13(3), 1392–1407.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Sarkar, N. K., Kundnani, P. and Grover, A. (2013). Functional analysis of Hsp70 superfamily proteins of rice (Oryza Sativa). Cell Stress Chaperones. Dordrecht: Springer Netherlands 18 (4), pp. 427–437.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences, 97(20), 10832–10837.CrossRefGoogle Scholar
  190. Scherrer, C., et al. (1990). Structural and functional reconstitution of the glucorcorticoid receptor- Hsp90 complex. The Journal of Biological Chemistry, 265(35), 21397–21400.PubMedGoogle Scholar
  191. Scheufler, C., et al. (2000). Structure of TPR domain-peptide complexes: Critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell, 101(2), 199–210.PubMedCrossRefGoogle Scholar
  192. Schirmer, E. C., Glover, J. R., Singer, M. A., & Lindquist, S. (1996). HSP100/Clp proteins: A common mechanism explains diverse functions. Trends in Biochemical Sciences, 21(8), 289–296.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Schlenstedt, G., Harris, S., Risse, B., Lill, R., & Silver, P. A. (1995). A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/ Kar2p via a conserved domain that specifies interactions with Hsp70s. The Journal of Cell Biology, 129(4), 979–988.PubMedCrossRefGoogle Scholar
  194. Schmitt, M., Neupert, W., & Langer, T. (1995). Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70. The EMBO Journal, 14(14), 3434–3444.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Schuster, G., et al. (1988). Evidence for protection by heat-shock proteins against photoinhibition during heat-shock. The EMBO Journal, 7(1), 1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Scroggins, B. T., & Neckers, L. (2007). Post-translational modification of heat-shock protein 90: Impact on chaperone function. Expert Opinion on Drug Discovery, 2(10), 1403–1414.PubMedCrossRefGoogle Scholar
  197. Sefton, B. M., Beemon, K., & Hunter, T. (1978). Comparison of the expression of the src gene of Rous sarcoma virus in vitro and in vivo. Journal of Virology, 28(3), 957–971.PubMedPubMedCentralGoogle Scholar
  198. Sherman, M., & Goldberg, A. L. (1994). Heat shock induced phosphorylation of GroEL alters its binding and dissociation from unfolded protein. The Journal of Biological Chemistry, 269(50), 31479–31483.PubMedGoogle Scholar
  199. Shi, Y., Mosser, D. D., & Morimoto, R. I. (1998). Molecular chaperones as HSF1-specific transcriptional repressors. Genes and Development, 12(5), 654–666.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Sichting, M., Mokranjac, D., Azem, A., Neupert, W., & Hell, K. (2005). Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. The EMBO Journal, 24(5), 1046–1056.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Siegert, R., et al. (2000). Structure of the molecular chaperone Prefoldin. Cell, 103(4), 621–632.PubMedCrossRefGoogle Scholar
  202. Silberstein, S., Schlenstedt, G., Silver, P. A., & Gilmore, R. (1998). A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. The Journal of Cell Biology, 143(4), 921–933.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Siligardi, G., et al. (2002). Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50 cdc37. The Journal of Biological Chemistry, 277(23), 20151–20159.PubMedCrossRefGoogle Scholar
  204. Silverstein, A. M., et al. (1997). Protein phosphatase 5 is a major component of glucocorticoid receptor°hsp90 complexes with properties of an FK506-binding immunophilin. The Journal of Biological Chemistry, 272(26), 16224–16230.PubMedCrossRefGoogle Scholar
  205. Smith, D. F. (1993). Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Molecular Endocrinology, 7(11), 1418–1429.PubMedGoogle Scholar
  206. Smith, et al. (1999). Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proceedings of the National Academy of Sciences, 96, 6678–6682.CrossRefGoogle Scholar
  207. Smith, B. J., & Yaffe, M. P. (1991). A mutation in the yeast heat-shock factor gene causes temperature sensitive defects in both mitochondrial protein import and the cell cycle. Molecular and Cellular Biology, 11(5), 2647–2655.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Smith, D. F., et al. (1992). Assembly of progesterone receptor with heat shock proteins and receptor activation are ATP mediated events. The Journal of Biological Chemistry, 267(2), 1350–1356.PubMedGoogle Scholar
  209. Spiess, C., et al. (2004). Mechanism of the eukaryotic chaperonin: Protein folding in the chamber of secrets. Trends in Cell Biology, 14(11), 598–604.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Stebbins, C. E., et al. (1997). Crystal structure of an Hsp90 – Geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell, 89(2), 239–250.PubMedCrossRefGoogle Scholar
  211. Stromer, T., Fischer, E., Richter, K., Haslbeck, M., & Buchner, J. (2004). Analysis of the regulation of the molecular chaperone Hsp26 by temperature- induced dissociation: The N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. The Journal of Biological Chemistry, 279(12), 11222–11228.PubMedCrossRefGoogle Scholar
  212. Sun, W., et al. (2001). At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal, 27(5), 407–415.PubMedCrossRefGoogle Scholar
  213. Taylor, R. P., & Benjamin, I. J. (2005). Small heat shock proteins: A new classification scheme in mammals. Journal of Molecular and Cellular Cardiology, 38(3), 433–444.PubMedCrossRefGoogle Scholar
  214. Teter, S. A., et al. (1999). Polypeptide flux through bacterial Hsp70. Cell, 97(6), 755–765.PubMedCrossRefGoogle Scholar
  215. Thomas, J. G., & Baneyx, F. (2000). ClpB and HtpG facilitate de novo protein folding in stressed Escherichia Coli cells. Molecular Microbiology, 36(6), 1360–1370.PubMedCrossRefGoogle Scholar
  216. Thulasiraman, V., Yang, C., & Frydman, J. (1999). In vivo newly translated polypeptides are sequestered in a protected folding environment. The EMBO Journal, 18(1), 85–95.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Tissiéres, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila Melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84(3), 389–398.PubMedCrossRefGoogle Scholar
  218. Trachootham, D., et al. (2008). Redox regulation of cell survival. Antioxidants and Redox Signaling, 10(8), 1343–1374.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Vabulas, R. M., et al. (2010). Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology, 1–18.Google Scholar
  220. Vainberg, I. E., et al. (1998). Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell, 93(5), 863–873.PubMedCrossRefGoogle Scholar
  221. Vanghele, M., & Ganea, E. (2010). The role of bacterial molecular chaperones in pathogen survival within the host. Rom. Journal of Biochemistry, 47(1), 87–100.Google Scholar
  222. Wagner, I., Arlt, H., van Dyck, L., Langer, T., & Neupert, W. (1994). Molecular chaperones cooperate with PIM1 protease in the degradation of mis- folded proteins in mitochondria. The EMBO Journal, 13(21), 5135–5145.PubMedPubMedCentralCrossRefGoogle Scholar
  223. Waldmann, T., et al. (1995). The Thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic Chaperonin TRiC. European Journal of Biochemistry, 227(3), 848–856.PubMedCrossRefGoogle Scholar
  224. Walker, A. I., et al. (1985). Double-stranded DNA induces the phosphorylation of several proteins including the 90000 mol. Wt. heat-shock protein in animal cell extracts. The EMBO Journal, 4(1), 139–145.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Wandinger, S. K., et al. (2006). The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. The EMBO Journal, 25(2), 367–376.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Wang, W., et al. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.PubMedCrossRefGoogle Scholar
  227. Wegele, H., Müller, L. and Buchner, J. (2004). Hsp70 and Hsp90—a relay team for protein folding. Reviews of Physiology, Biochemistry and Pharmacology, Springer, Berlin, Heidelberg 151, pp. 1–44.Google Scholar
  228. Weissman, J. S., et al. (1995). Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell, 83(4), 577–587.PubMedCrossRefGoogle Scholar
  229. Welker, S., Rudolph, B., Frenzel, E., Hagn, F., Liebisch, G., Schmitz, G., Scheuring, J., Kerth, A., Blume, A., Weinkauf, S., Haslbeck, M., Kessler, H., & Buchner, J. (2010). Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Molecular Cell, 39(4), 507–520.PubMedCrossRefGoogle Scholar
  230. Yamada, K., et al. (2007). Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis Thaliana. The Journal of Biological Chemistry, 282(52), 37794–37804.PubMedCrossRefGoogle Scholar
  231. Yang, D., Yea, X., & Lorimer, G. H. (2013). Symmetric GroEL: GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proceedings of the National Academy of Sciences, 110(46), 4298–4305.CrossRefGoogle Scholar
  232. Young, J. C., Moarefi, I., & Hartl, F. U. (2001). Hsp90. The Journal of Cell Biology, 154(2), 267–274.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Young, J. C., Barral, J. M., & Hartl, F. U. (2003). More than folding: Localized functions of cytosolic chaperones. Trends in Biochemical Sciences, 28(10), 541–547.PubMedCrossRefGoogle Scholar
  234. Yu, A., et al. (2015). Roles of Hsp70s in stress responses of microorganisms, plants, and animals. BioMed Res Intl, 2015(2015), 1–8.Google Scholar
  235. Zhang, W., et al. (2004). Biochemical and structural studies of the interaction of Cdc37 with Hsp90. Journal of Molecular Biology, 340(4), 891–907.PubMedCrossRefGoogle Scholar
  236. Zhao, R., et al. (2005). Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell, 120(5), 715–727.PubMedCrossRefGoogle Scholar
  237. Zhao, R., & Houry, W. A. (2007). Molecular interaction network of the Hsp90 chaperone system, BT - molecular aspects of the stress response: Chaperones, membranes and networks. In P. Csermely & L. Vígh (Eds.), (pp. 27–36). NY: Springer.Google Scholar
  238. Zhu, X., et al. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272(5268), 1606–1614.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Zou, J., et al. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 94(4), 471–480.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bhaskar K. Chatterjee
    • 1
  • Sarita Puri
    • 1
  • Ashima Sharma
    • 1
  • Ashutosh Pastor
    • 1
  • Tapan K. Chaudhuri
    • 1
  1. 1.Kusuma School of Biological SciencesIndian Institute of Technology DelhiHauzKhasIndia

Personalised recommendations