Advertisement

Heat Shock Protein 70 (HSP70) Family in Dengue Virus Infection

  • Rattiyaporn Kanlaya
  • Visith Thongboonkerd
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 13)

Abstract

Dengue virus (DENV) infection is a mosquito-borne disease and remains one of the major public health problems worldwide, particularly in tropical and sub-tropical regions. In most cases, the infection causes only mild and self-limiting illness, namely dengue fever (DF). The infection, however, can develop to severe and life-threatening disease known as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Recent studies have suggested that host factors, while protect against the invaded virus, can be modulated and utilized by DENV for its survival and propagation within host cells, leading to infection. Heat shock protein 70 (HSP70) family is one of the key components of host machinery for protein homeostasis (proteostasis). Molecular chaperone function of HSP70 family is achieved by cooperative networking of HSP70 family members (HSP70s) and their co-chaperones to regulate ATP-ADP cycling. According to their fundamental importance, HSP70s have been discovered as the host factors hijacked by many viruses, including DENV, for their efficient infection. This chapter provides the current knowledge on how DENV manipulates host HSP70s in multiple stages of the viral life cycle to accomplish the infection. The potential of HSP70s-based antiviral therapeutics is also discussed.

Keywords

Chaperone Dengue HSP70 Stress response Viral entry Viral replication 

Abbreviations

ADE

Antibody-dependent enhancement

APCs

Antigen presenting cells

ATF6

Activating transcription factor 6

BiP

Binding immunoglobulin protein

C

Capsid

DC

Dendritic cells

DC-SIGN

Dendritic cell-specific ICAM-grabbing non-integrin

DENV

Dengue virus

DF

Dengue fever

DHF

Dengue hemorrhagic fever

DSS

Dengue shock syndrome

DVHFs

Dengue viral host factors

E

Envelope

eIF2α

Eukaryotic translation initiation factor 2α

ER

Endoplasmic reticulum

ERp44

Endoplasmic reticulum protein 44

GRP78

78 kDa glucose-regulated protein

Hsc70

Heat shock cognate 70

HSP70

Heat shock protein 70

Hsp70i

Inducible HSP70

HSP70s

HSP70 family members

HSPA5

Heat shock 70 kDa protein 5

ICAM

Intercellular adhesion molecule

IRE1

Inositol-requiring protein 1

JEV

Japanese encephalitis virus

M

Membrane protein

miRNA

microRNA

NS

Non-structural protein

PERK

Protein kinase R-like ER kinase

prM

Premembrane protein

RISC

RNA-induced silencing complex

RNAi

RNA interference

siRNA

Small interfering RNA

UPR

Unfolded protein response

VOPBA

Viral overlay protein binding assay

VSR

Viral suppressor of RNA silencing

WNV

West Nile virus

XBP1

X-box binding protein 1

Notes

Acknowledgements

This work was supported by Mahidol University research grant and the Thailand Research Fund (IRN60W0004 and IRG5980006).

References

  1. Alberti, S., Demand, J., Esser, C., Emmerich, N., Schild, H., & Hohfeld, J. (2002). Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. The Journal of Biological Chemistry, 277, 45920–45927.CrossRefGoogle Scholar
  2. Avirutnan, P., Malasit, P., Seliger, B., Bhakdi, S., & Husmann, M. (1998). Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. Journal of Immunology, 161, 6338–6346.Google Scholar
  3. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature, 496, 504–507.CrossRefGoogle Scholar
  4. Brocchieri, L., Conway, D. M., & Macario, A. J. (2008). hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evolutionary Biology, 8, 19.CrossRefGoogle Scholar
  5. Cao-Lormeau, V. M. (2009). Dengue viruses binding proteins from Aedes Aegypti and Aedes Polynesiensis salivary glands. Virology Journal, 6, 35.CrossRefGoogle Scholar
  6. Chavez-Salinas, S., Ceballos-Olvera, I., Reyes-Del Valle, J., Medina, F., & Del Angel, R. M. (2008). Heat shock effect upon dengue virus replication into U937 cells. Virus Research, 138, 111–118.CrossRefGoogle Scholar
  7. Chen, T., & Cao, X. (2010). Stress for maintaining memory: HSP70 as a mobile messenger for innate and adaptive immunity. European Journal of Immunology, 40, 1541–1544.CrossRefGoogle Scholar
  8. Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., & Wu-Hsieh, B. A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. Journal of Virology, 81, 5518–5526.CrossRefGoogle Scholar
  9. Chiu, H. C., Hannemann, H., Heesom, K. J., Matthews, D. A., & Davidson, A. D. (2014). High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells. PLoS One, 9, e93305.CrossRefGoogle Scholar
  10. Cruz-Oliveira, C., Freire, J. M., Conceicao, T. M., Higa, L. M., Castanho, M. A., & Da Poian, A. T. (2015). Receptors and routes of dengue virus entry into the host cells. FEMS Microbiology Reviews, 39, 155–170.CrossRefGoogle Scholar
  11. De Maio, A. (2014). Extracellular Hsp70: Export and function. Current Protein & Peptide Science, 15, 225–231.CrossRefGoogle Scholar
  12. Dekker, S. L., Kampinga, H. H., & Bergink, S. (2015). DNAJs: More than substrate delivery to HSPA. Frontiers in Molecular Biosciences, 2, 35.CrossRefGoogle Scholar
  13. Diwaker, D., Mishra, K. P., & Ganju, L. (2015). Effect of modulation of unfolded protein response pathway on dengue virus infection. Acta Biochimica et Biophysica Sinica (Shanghai), 47, 960–968.Google Scholar
  14. Duangchinda, T., Dejnirattisai, W., Vasanawathana, S., Limpitikul, W., Tangthawornchaikul, N., Malasit, P., Mongkolsapaya, J., & Screaton, G. (2010). Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proceedings of the National Academy of Sciences of the United States of America, 107, 16922–16927.CrossRefGoogle Scholar
  15. Fischl, W., & Bartenschlager, R. (2011). Exploitation of cellular pathways by Dengue virus. Current Opinion in Microbiology, 14, 470–475.CrossRefGoogle Scholar
  16. Flaherty, K. M., DeLuca-Flaherty, C., & McKay, D. B. (1990). Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 346, 623–628.CrossRefGoogle Scholar
  17. Fong, J. J., Sreedhara, K., Deng, L., Varki, N. M., Angata, T., Liu, Q., Nizet, V., & Varki, A. (2015). Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. The EMBO Journal, 34, 2775–2788.CrossRefGoogle Scholar
  18. Halstead, S. B. (2014). Dengue antibody-dependent enhancement: Knowns and unknowns. Microbiology Spectrum, 2.  https://doi.org/10.1128/microbiolspec.AID-0022-2014
  19. Harris, E., Holden, K. L., Edgil, D., Polacek, C., & Clyde, K. (2006). Molecular biology of flaviviruses. Novartis Foundation Symposium, 277, 23–39.PubMedGoogle Scholar
  20. Hartl, F. U., & Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 16, 574–581.CrossRefGoogle Scholar
  21. Henderson, B., & Pockley, A. G. (2010). Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. Journal of Leukocyte Biology, 88, 445–462.CrossRefGoogle Scholar
  22. Higa, L. M., Caruso, M. B., Canellas, F., Soares, M. R., Oliveira-Carvalho, A. L., Chapeaurouge, D. A., Almeida, P. M., Perales, J., Zingali, R. B., & Da Poian, A. T. (2008). Secretome of HepG2 cells infected with dengue virus: Implications for pathogenesis. Biochimica et Biophysica Acta, 1784, 1607–1616.CrossRefGoogle Scholar
  23. Howe, M. K., Speer, B. L., Hughes, P. F., Loiselle, D. R., Vasudevan, S., & Haystead, T. A. (2016). An inducible heat shock protein 70 small molecule inhibitor demonstrates anti-dengue virus activity, validating Hsp70 as a host antiviral target. Antiviral Research, 130, 81–92.CrossRefGoogle Scholar
  24. Jindadamrongwech, S., Thepparit, C., & Smith, D. R. (2004). Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Archives of Virology, 149, 915–927.CrossRefGoogle Scholar
  25. Kakumani, P. K., Rajgokul, K. S., Ponia, S. S., Kaur, I., Mahanty, S., Medigeshi, G. R., Banerjea, A. C., Chopra, A. P., Malhotra, P., Mukherjee, S. K., et al. (2015a). Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner. The Biochemical Journal, 471, 89–99.CrossRefGoogle Scholar
  26. Kakumani, P. K., Shanmugam, R. K., Kaur, I., Malhotra, P., Mukherjee, S. K., & Bhatnagar, R. K. (2015b). Association of HADHA with human RNA silencing machinery. Biochemical and Biophysical Research Communications, 466, 481–485.CrossRefGoogle Scholar
  27. Kakumani, P. K., Medigeshi, G. R., Kaur, I., Malhotra, P., Mukherjee, S. K., & Bhatnagar, R. K. (2016). Role of human GRP75 in miRNA mediated regulation of dengue virus replication. Gene, 586, 7–11.CrossRefGoogle Scholar
  28. Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews. Molecular Cell Biology, 11, 579–592.CrossRefGoogle Scholar
  29. Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., et al. (2002). Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell, 108, 717–725.CrossRefGoogle Scholar
  30. Limjindaporn, T., Wongwiwat, W., Noisakran, S., Srisawat, C., Netsawang, J., Puttikhunt, C., Kasinrerk, W., Avirutnan, P., Thiemmeca, S., Sriburi, R., et al. (2009). Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochemical and Biophysical Research Communications, 379, 196–200.CrossRefGoogle Scholar
  31. Malavige, G. N., & Ogg, G. S. (2013). T cell responses in dengue viral infections. Journal of Clinical Virology, 58, 605–611.CrossRefGoogle Scholar
  32. Martinez-Betancur, V., Marin-Villa, M., & Martinez-Gutierrez, M. (2014). Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains. Journal of Medical Virology, 86, 1448–1458.CrossRefGoogle Scholar
  33. Mathew, A., Townsley, E., & Ennis, F. A. (2014). Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiology, 9, 411–425.CrossRefGoogle Scholar
  34. Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature, 427, 313–319.CrossRefGoogle Scholar
  35. Mongkolsapaya, J., Dejnirattisai, W., Xu, X. N., Vasanawathana, S., Tangthawornchaikul, N., Chairunsri, A., Sawasdivorn, S., Duangchinda, T., Dong, T., Rowland-Jones, S., et al. (2003). Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nature Medicine, 9, 921–927.CrossRefGoogle Scholar
  36. Mongkolsapaya, J., Duangchinda, T., Dejnirattisai, W., Vasanawathana, S., Avirutnan, P., Jairungsri, A., Khemnu, N., Tangthawornchaikul, N., Chotiyarnwong, P., Sae-Jang, K., et al. (2006). T cell responses in dengue hemorrhagic fever: Are cross-reactive T cells suboptimal? Journal of Immunology, 176, 3821–3829.CrossRefGoogle Scholar
  37. Munoz, M. L., Cisneros, A., Cruz, J., Das, P., Tovar, R., & Ortega, A. (1998). Putative dengue virus receptors from mosquito cells. FEMS Microbiology Letters, 168, 251–258.CrossRefGoogle Scholar
  38. Nain, M., Mukherjee, S., Karmakar, S. P., Paton, A. W., Paton, J. C., Abdin, M. Z., Basu, A., Kalia, M., & Vrati, S. (2017). GRP78 is an important host factor for Japanese encephalitis virus entry and replication in mammalian cells. Journal of Virology, 91, e02274–e02216.CrossRefGoogle Scholar
  39. Oh, W. K., & Song, J. (2006). Hsp70 functions as a negative regulator of West Nile virus capsid protein through direct interaction. Biochemical and Biophysical Research Communications, 347, 994–1000.CrossRefGoogle Scholar
  40. Olver, C., & Vidal, M. (2007). Proteomic analysis of secreted exosomes. Sub-Cellular Biochemistry, 43, 99–131.CrossRefGoogle Scholar
  41. Ooi, A., Wong, J. C., Petillo, D., Roossien, D., Perrier-Trudova, V., Whitten, D., Min, B. W., Tan, M. H., Zhang, Z., Yang, X. J., et al. (2011). An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell, 20, 511–523.CrossRefGoogle Scholar
  42. Padwad, Y. S., Mishra, K. P., Jain, M., Chanda, S., & Ganju, L. (2010). Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: Downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunology, 23, 557–565.CrossRefGoogle Scholar
  43. Paingankar, M. S., Gokhale, M. D., & Deobagkar, D. N. (2010). Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Archives of Virology, 155, 1453–1461.CrossRefGoogle Scholar
  44. Pando-Robles, V., Oses-Prieto, J. A., Rodriguez-Gandarilla, M., Meneses-Romero, E., Burlingame, A. L., & Batista, C. V. (2014). Quantitative proteomic analysis of Huh-7 cells infected with Dengue virus by label-free LC-MS. Journal of Proteomics, 111, 16–29.CrossRefGoogle Scholar
  45. Paradkar, P. N., Ooi, E. E., Hanson, B. J., Gubler, D. J., & Vasudevan, S. G. (2011). Unfolded Protein Response (UPR) gene expression during antibody-dependent enhanced infection of cultured monocytes correlates with dengue disease severity. Bioscience Reports, 31, 221–230.CrossRefGoogle Scholar
  46. Patramool, S., Surasombatpattana, P., Luplertlop, N., Seveno, M., Choumet, V., Thomas, F., & Misse, D. (2011). Proteomic analysis of an Aedes albopictus cell line infected with Dengue serotypes 1 and 3 viruses. Parasites & Vectors, 4, 138.CrossRefGoogle Scholar
  47. Pena, J., & Harris, E. (2011). Dengue virus modulates the unfolded protein response in a time-dependent manner. The Journal of Biological Chemistry, 286, 14226–14236.CrossRefGoogle Scholar
  48. Perera, N., Miller, J. L., & Zitzmann, N. (2017). The role of the unfolded protein response in dengue virus pathogenesis. Cellular Microbiology, 19.  https://doi.org/10.1111/cmi.12734
  49. Pockley, A. G., Henderson, B., & Multhoff, G. (2014). Extracellular cell stress proteins as biomarkers of human disease. Biochemical Society Transactions, 42, 1744–1751.CrossRefGoogle Scholar
  50. Radons, J. (2016). The human HSP70 family of chaperones: Where do we stand? Cell Stress & Chaperones, 21, 379–404.CrossRefGoogle Scholar
  51. Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F., & Del Angel, R. M. (2005). Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. Journal of Virology, 79, 4557–4567.CrossRefGoogle Scholar
  52. Rungruengphol, C., Jaresitthikunchai, J., Wikan, N., Phaonakrop, N., Keadsanti, S., Yoksan, S., Roytrakul, S., & Smith, D. R. (2015). Evidence of plasticity in the dengue virus: Host cell interaction. Microbial Pathogenesis, 86, 18–25.CrossRefGoogle Scholar
  53. Salas-Benito, J. S., & Del Angel, R. M. (1997). Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. Journal of Virology, 71, 7246–7252.PubMedPubMedCentralGoogle Scholar
  54. Salas-Benito, J., Reyes-Del Valle, J., Salas-Benito, M., Ceballos-Olvera, I., Mosso, C., & Del Angel, R. M. (2007). Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein. The American Journal of Tropical Medicine and Hygiene, 77, 283–290.PubMedGoogle Scholar
  55. Salimu, J., Spary, L. K., Al Taei, S., Clayton, A., Mason, M. D., Staffurth, J., & Tabi, Z. (2015). Cross-presentation of the Oncofetal tumor antigen 5T4 from irradiated prostate cancer cells–a key role for heat-shock protein 70 and receptor CD91. Cancer Immunology Research, 3, 678–688.CrossRefGoogle Scholar
  56. Screaton, G., Mongkolsapaya, J., Yacoub, S., & Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews. Immunology, 15, 745–759.CrossRefGoogle Scholar
  57. Taguwa, S., Maringer, K., Li, X., Bernal-Rubio, D., Rauch, J. N., Gestwicki, J. E., Andino, R., Fernandez-Sesma, A., & Frydman, J. (2015). Defining Hsp70 subnetworks in Dengue virus replication reveals key vulnerability in Flavivirus infection. Cell, 163, 1108–1123.CrossRefGoogle Scholar
  58. Thongtan, T., Wikan, N., Wintachai, P., Rattanarungsan, C., Srisomsap, C., Cheepsunthorn, P., & Smith, D. R. (2012). Characterization of putative Japanese encephalitis virus receptor molecules on microglial cells. Journal of Medical Virology, 84, 615–623.CrossRefGoogle Scholar
  59. Umareddy, I., Pluquet, O., Wang, Q. Y., Vasudevan, S. G., Chevet, E., & Gu, F. (2007). Dengue virus serotype infection specifies the activation of the unfolded protein response. Virology Journal, 4, 91.CrossRefGoogle Scholar
  60. Upanan, S., Kuadkitkan, A., & Smith, D. R. (2008). Identification of dengue virus binding proteins using affinity chromatography. Journal of Virological Methods, 151, 325–328.CrossRefGoogle Scholar
  61. Vega-Almeida, T. O., Salas-Benito, M., Nova-Ocampo, M. A., Del Angel, R. M., & Salas-Benito, J. S. (2013). Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Archives of Virology, 158, 1189–1207.CrossRefGoogle Scholar
  62. Wati, S., Soo, M. L., Zilm, P., Li, P., Paton, A. W., Burrell, C. J., Beard, M., & Carr, J. M. (2009). Dengue virus infection induces upregulation of GRP78, which acts to chaperone viral antigen production. Journal of Virology, 83, 12871–12880.CrossRefGoogle Scholar
  63. Wu, Y. P., Chang, C. M., Hung, C. Y., Tsai, M. C., Schuyler, S. C., & Wang, R. Y. (2011). Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity. Virology Journal, 8, 128.CrossRefGoogle Scholar
  64. Xiao, A., Wong, J., & Luo, H. (2010). Viral interaction with molecular chaperones: Role in regulating viral infection. Archives of Virology, 155, 1021–1031.CrossRefGoogle Scholar
  65. Ye, J., Chen, Z., Zhang, B., Miao, H., Zohaib, A., Xu, Q., Chen, H., & Cao, S. (2013). Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication. PLoS One, 8, e75188.CrossRefGoogle Scholar
  66. Yu, I. M., Zhang, W., Holdaway, H. A., Li, L., Kostyuchenko, V. A., Chipman, P. R., Kuhn, R. J., Rossmann, M. G., & Chen, J. (2008). Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319, 1834–1837.CrossRefGoogle Scholar
  67. Zhang, M., Zheng, X., Wu, Y., Gan, M., He, A., Li, Z., Zhang, D., Wu, X., & Zhan, X. (2013). Differential proteomics of Aedes albopictus salivary gland, midgut and C6/36 cell induced by dengue virus infection. Virology, 444, 109–118.CrossRefGoogle Scholar
  68. Zhu, Y. Z., Cao, M. M., Wang, W. B., Wang, W., Ren, H., Zhao, P., & Qi, Z. T. (2012). Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. The Journal of General Virology, 93, 61–71.CrossRefGoogle Scholar
  69. Zhu, H., Fang, X., Zhang, D., Wu, W., Shao, M., Wang, L., & Gu, J. (2016). Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis, 21, 96–109.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rattiyaporn Kanlaya
    • 1
  • Visith Thongboonkerd
    • 1
  1. 1.Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations