Application of Algae Biomass and Algae Extracts in Cosmetic Formulations

  • Bogusława ŁęskaEmail author
  • Beata Messyasz
  • Grzegorz Schroeder
Part of the Developments in Applied Phycology book series (DAPH, volume 8)


Biomass of marine algae and their extracts are now one of the most widely used natural ingredients in cosmetics, because of the presence of a wide variety of biologically active compounds in their thalli. Mainly, it comes down to marine species, but the most current interdisciplinary research shows that freshwater macroscopic green algae species (e.g., Chara fragilis, Cladophora glomerata, Ulva flexuosa) may also be a rich source of macro- and micronutrients and other bioactive substances such as fatty acids, polysaccharides, pigments, polyphenols, etc. Freshwater macroalgae are a rare object of study and are practically absent within the cosmetics market. In this chapter, algae harvesting and the processing of algal biomass are discussed. This chapter shows, in particular, that the presence of bioactive substances in their thalli determines the broad biological activity and potential use of freshwater algae in the production of cosmetics.


Algal biomass Algae extract Bioactive compounds Cosmetic Extraction methods 


  1. Aguilar-Briseño JA, Cruz-Suarez LE, Sassi JF, Ricque-Marie D, Zapata-Benavides P, Mendoza-Gamboa E, Rodríguez-Padilla C, Trejo-Avila LM (2015) Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection. Mar Drugs 13:697–712PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmed OM, Ahmed RR (2014) Anti-proliferative and apoptotic efficacies of ulvan polysaccharides against different types of carcinoma cells in vitro and in vivo. J Cancer Ther 6:2002–2008Google Scholar
  3. Akremi N, Cappoen D, Anthonissen R, Verschaeve L, Bouraoui A (2017) Phytochemical and in vitro antimicrobial and genotoxic activity in the brown algae Dictyopteris membranacea. S Afr J Bot 108:308–314CrossRefGoogle Scholar
  4. Allen VG, Pond KR, Saker KE, Fontenot JP, Bagley CP, Ivy RL, Evans RR, Schmidt RE, Fike JH, Zhang X, Ayad JY, Brown CP, Miller MF, Montgomery JL, Mahan J, Wester DB, Melton C (2001) Tasco: influence of a brown seaweed on antioxidants in forages and livestock – a review. J Anim Sci 79(Suppl. E):E21–E31CrossRefGoogle Scholar
  5. Alves A, Caridade SG, Mano JF, Sousa RA, Reis R (2010) Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res 345:2194–2200PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alves A, Sousa RA, Reis RL (2013) A practical perspective on ulvan extracted from green algae. J Appl Phycol 25:407–424CrossRefGoogle Scholar
  7. Amornlerdpison D, Mengumphan K, Thumvijit S, Peerapornpisal Y (2011) Antioxidant and anti-inflammatory activities of freshwater macroalga, Cladophora glomerata Kützing. Thai J Agric Sci 44:283–291Google Scholar
  8. Andrès E, Molinari J, Péterszegi G, Mariko B, Ruszova E, Velebny V, Faury G, Robert L (2006) Pharmacological properties of rhamnose-rich polysaccharides, potential interest in age dependent alterations of connectives tissues. Pathol Biol 54:420–425PubMedCrossRefPubMedCentralGoogle Scholar
  9. Barbosa-Pereira L, Pocheville A, Angulo I, Paseiro-Losada P, Cruz JM (2013) Fractionation and purification of bioactive compounds obtained from a brewery waste stream. Biomed Res Int 2013:408491PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bedoux G, Hardouin K, Burlot A, Bourgougnon N (2014) Bioactive components from seaweeds: cosmetic applications and future development. Adv Bot Res 71:345–378CrossRefGoogle Scholar
  11. Bian Q, Gao S, Zhou J, Qin J, Taylor A, Johnson EJ, Tanq G, Sparrow JR, Gierhart D, Shanq F (2012) Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med 53:1298–1307PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bliding C (1963) A critical survey of European taxa in Ulvales. Part 1. Casosiphonia, Blidingia, Enteromorpha. Opera Bot 8:1–160Google Scholar
  13. Bliding C (1968) A critical survey of European taxa in Ulvales. Part 2. Ulva, Ulvaria, Monostoma, Kornmannia. Bot Notiser 121:534–629Google Scholar
  14. Blomster J, Hoey EM, Maggs CA, Stanhope MJ (2000) Species-specific oligonucleotide probes for macroalgae: molecular discrimination of two marine fouling species of Enteromorpha (Ulvophyceae). Mol Ecol 2:177CrossRefGoogle Scholar
  15. Borowitzka MA (2013) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  16. Borowitzka MA (2013a) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  17. Castelar B, Reis PR, Dos Santos Calheiros AC (2014) Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: recruitment, growth, and ulvan yield. J Appl Phycol 26:1989–1919CrossRefGoogle Scholar
  18. Cefali LC, Ataide JA, Moriel P, Foglio MA, Mazzola PG (2016) Plant-based active photoprotectants for sunscreens. Int J Cosmet Sci 38:346–353PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chandika P, Ko SC, Jung WK (2015) Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol 77:24–35PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cox S, Hamilton Turley G, Rajauria G, Abu-Ghannam N, Jaiswal AK (2014) Antioxidant potential and antimicrobial efficacy of seaweed (Himanthalia elongata) extract in model food systems. J Appl Phycol 26:1823–1831CrossRefGoogle Scholar
  21. Czerpak R, Jabłońska-Trypuć A (2008) Roślinne surowce kosmetyczne [Vegetable cosmetic raw materials] MedPharmGoogle Scholar
  22. D’Orazio N, Gemello E, Gammone MA, de Girolamo M, Ficoneri C, Riccioni G (2012) Fucoxantin: a treasure from the sea. Mar Drugs 10:604–616PubMedPubMedCentralCrossRefGoogle Scholar
  23. De Lima Yamaguchi KK, Ravazi Pereira LF, Lamarão CV, Silva Lima E, da Veiga-Junior VF (2015) Amazon acai: chemistry and biological activities: a review. Food Chem 179:137–151PubMedCrossRefPubMedCentralGoogle Scholar
  24. Debacq-Chainiaux F, Borlon C, De Hertogh B, Remacle J, Morvan PY, Vallée R, Toussain O (2006) Identification of potential anti-photoageing algal compounds using an in-vitro model of photoageing. J Pharm Pharmacol 58:1577–1583PubMedCrossRefPubMedCentralGoogle Scholar
  25. El-Baky HHA, Baz FKE, Baroty GSE (2009) Potential biological properties of sulphated polysaccharides extracted from the macroalgae Ulva lactuca. Am J Cancer Res 2:1–11Google Scholar
  26. El-Baz FK, El-Senousy WM, El-Sayed AB, Kamel MM (2013) In vitro antiviral and antimicrobial activities of Spirulina platensis extract. J Appl Pharm Sci 3:52–56Google Scholar
  27. Esquivel-Hernández DA, Ibarra-Garza IP, Rodríguez-Rodríguez J, Rostro-Alanis M, Alemán-Nava GS, García-Pérez JS, Parra-Saldívar R (2017) Green extraction technologies for high-value metabolites from algae: a review. Biofuels Bioprod Biorefin 11:215–231CrossRefGoogle Scholar
  28. Fabrowska J, Łęska B (2012) Algae and their chelating properties. In: Rybachenko VI (ed) From molecules to functional architecture, supramolecular interactions. East Publisher House, Donetsk, pp 495–511Google Scholar
  29. Fabrowska J, Łęska B, Schroeder G (2015a) Freshwater Cladophora glomerata as a new potential cosmetic raw material. Chemik 69:491–497Google Scholar
  30. Fabrowska J, Łęska B, Schroeder G, Messyasz B, Pikosz M (2015b) Biomass and extracts of algae as material for cosmetics. In: Kim S-K, Chojnacka K (ed) Marine algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 681–706Google Scholar
  31. Fabrowska J, Ibañez E, Łęska B, Herrero M (2016) Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Res 19:237–245CrossRefGoogle Scholar
  32. Fabrowska J, Kapuścińska A, Łęska B, Feliksik-Skrobich K, Nowak I (2017) In vivo studies and stability study of Cladophora glomerata extract as a cosmetic active ingredient. Acta Pol Pharm 74:633–641PubMedPubMedCentralGoogle Scholar
  33. Fang JY, Chiu HC, Wu JT, Chiang YR, Hsu SH (2004) Fatty acids in Botryococcus braunii accelerate topical delivery of flurbiprofen into and across skin. Int J Pharm 276:163–173PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing Limited, Cambridge, pp 197–213CrossRefGoogle Scholar
  35. Gade R, Siva Tulasi M, Aruna Bhai V (2013) Seaweeds: a novel biomaterial. Int J Pharm Pharm Sci 5:40–44Google Scholar
  36. Gadenne V, Lebrun L, Jouenne T, Thebault P (2013) Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface. Colloids Surf B: Biointerfaces 112:229–236PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gellenbeck K (2011) Utilization of algal materials for nutraceutical and cosmeceutical applications – what do manufacturers need to know? J Appl Phycol 24(3):309–313CrossRefGoogle Scholar
  38. Gómez-Ordóńez E, Jiménez-Escrig A, Rupérez P (2012) Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats. Food Chem 135:806–811PubMedCrossRefPubMedCentralGoogle Scholar
  39. Guiry MD, Guiry GM, (2015) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway, Accessed on 11.05.2017
  40. Hardouin K, Bedoux G, Burlot AS, Nyvall-Collén P, Bourgougnon N (2014) Enzymatic recovery of metabolites from seaweeds: potential applications. Adv Bot Res 71:279–320CrossRefGoogle Scholar
  41. Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, Affan A, Oh C, Jung WK, Jeon YJ (2010) Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol 48:2045–2051PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hernández-Garibay E, Zertuche-González J, Pacheco-Ruíz I (2010) Isolation and chemical characterization of algal polysaccharides, from the green seaweed Ulva clathrata (Roth) C. Agardh. J Appl Phycol 23:537–542CrossRefGoogle Scholar
  43. Herrero M, Mendiola JA, Cifuentes A, Ibáñez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511CrossRefPubMedGoogle Scholar
  44. Igielska-Kalwat J, Wawrzyńczak A, Nowak I (2012) β-Carotene as an exemplary carotenoid and its application in cosmetic industry. Chemik 66:140–144Google Scholar
  45. Ikawa M, Thomas VM, Buckley LJ, Uebel JJ (1973) Sulfur and the toxicity of the red alga Ceramium rubrum to Bacillus subtilis. J Phycol 9:302–304Google Scholar
  46. Imhoff J, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol Adv 29:468–482PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kartal M, Orhan I, Abu-Asaker M, Senol FS, Atici T, Sener B (2009) Antioxidant and anticholinesterase assets and liquid chromatography-mass spectrometry preface of various fresh-water and marine macroalgae. Pharmacogn Mag 5:291–297CrossRefGoogle Scholar
  48. Komárek J, Kastovsky J, Mares J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 86:295–335Google Scholar
  49. Lahaye M, Axelos MAV (1993) Gelling properties of water-soluble polysaccharides from proliferating marine green seaweeds (Ulva spp.). Carbohydr Polym 22:261–265CrossRefGoogle Scholar
  50. Lahaye M, Ray B (1996) Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta) – NMR analysis of ulvan oligosaccharides. Carbohydr Res 283:161–173PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lahaye M, Alvarez-Cabal Cimadevilla E, Kuhlenkamp R, Quemener B, Lognone V, Dion P (1999) Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). J Appl Phycol 11:1–7CrossRefGoogle Scholar
  52. Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneur F (1998) Antioxidant and prooxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol 10:121–129CrossRefGoogle Scholar
  53. Leiro M, Castro R, Arranz JA, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 7:879–888PubMedCrossRefPubMedCentralGoogle Scholar
  54. Longo GO, Hay ME (2017) Seaweed allelopathy to corals: are active compounds on, or in, seaweeds? Coral Reefs 36:247–253CrossRefGoogle Scholar
  55. Ma L, Lin XM (2010) Effects of lutein and zeaxanthin on aspects of eye health. J Sci Food Agric 90:2–12PubMedCrossRefPubMedCentralGoogle Scholar
  56. Machu L, Misurcova L, Ambrozova JV, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20:1118–1133PubMedCrossRefPubMedCentralGoogle Scholar
  57. Malinowska P (2011) Algae extracts as active cosmetic ingredients. In: Zeszyty Naukowe, Poznan University of Economic and Business, pp 123–129Google Scholar
  58. Malinowska P, Gliszczynska-Świglo A, Szymusiak H (2014) Protective effect of commercial acerola, willow, and rose extracts against oxidation of cosmetic emulsions containing wheat germ oil. Eur J Lipid Sci Technol 116:1553–1562CrossRefGoogle Scholar
  59. Manoylov KM (2014) Taxonomic identification of algae (morphological and molecular) species concepts, methodologies, and their implications for ecological bioassessment. J Phycol 50:409–424PubMedCrossRefPubMedCentralGoogle Scholar
  60. Maoka T, Tokuda H, Suzuki N, Kato H, Etoh H (2012) Anti-oxidative, anti-tumor-promoting, anti-carcinogenesis activities of nitroastaxanthin and nitrolutein, the reaction products of astaxanthin and lutein with peroxynitrite. Mar Drugs 10:1391–1399PubMedPubMedCentralCrossRefGoogle Scholar
  61. Martini MC (2014) Kosmetologia i farmakologia skóry [Cosmetology and skin pharmacology] PZWL WarszawaGoogle Scholar
  62. Messyasz B, Rybak A (2009) The distribution of green algae species from the Ulva genera (syn. Enteromorpha, Chlorophyta) in Polish inland waters. Oceanol Hydrobiol Stud 138:121–138Google Scholar
  63. Messyasz B, Pikosz M, Schroeder G, Łęska B, Fabrowska J (2015a) Identification and ecology of macroalgae species existing in Poland. In: Kim S-K, Chojnacka K (ed) Marine algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 17–39Google Scholar
  64. Messyasz B, Łęska B, Fabrowska J, Pikosz M, Rój E, Cieślak A, Schroeder G (2015b) Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chem 13:1108–1118Google Scholar
  65. Michalak I, Chojnacka K (2014) Algal extracts: technology and advances. Eng Life Sci 14:581–591CrossRefGoogle Scholar
  66. Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15:160–176CrossRefGoogle Scholar
  67. Michalak I, Witek-Krowiak A, Chojnacka K, Bhatnagar A (2015) Advances in biosorption of microelements – the starting point for the production of new agrochemicals. Rev Inorg Chem 35:115–133CrossRefGoogle Scholar
  68. Michalak I, Chojnacka K, Saeid A (2017) Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO2 algal extracts. Molecules 22:66CrossRefGoogle Scholar
  69. Milledge JJ, Nielsen BV, Bailey D (2016) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Rev Environ Sci Biotechnol 15:67–88CrossRefGoogle Scholar
  70. Minchin D, Nunn J (2014) The invasive brown alga Undaria pinnatifida (Harvey) Suringar, 1873 (Laminariales: Alariaceae), spreads northwards in Europe. Bioinvasions Rec 3:57–63CrossRefGoogle Scholar
  71. Mišurcová L, Orsavová J, Ambrožová JV (2014) Algal polysaccharides and health. In: Ramawat KG, Mérillon JM (eds) Polysaccharides bioactivity and biotechnology. Springer International Publishing, Cham, pp 109–144Google Scholar
  72. Molski M (2010) Chemia piękna [Chemistry of beauty] PWN, WarszawaGoogle Scholar
  73. Moss B (1967) A Note on the estimation of chlorophyll A in freshwater algal communities. Limnol Oceanogr 340–342CrossRefGoogle Scholar
  74. Ngo DH, Kim SK (2013) Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 62:70–75PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ngo DH, Wijesekara I, Vo T, Ta QV, Kim SK (2011) Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Res Int 44:523–529CrossRefGoogle Scholar
  76. O’Doherty JV, Dillon S, Figat S, Callan JJ, Sweeney T (2010) The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Anim Feed Sci Technol 157:173–180CrossRefGoogle Scholar
  77. Onofrejová L, Vasícková J, Klejdus B, Stratil P, Misurcová L, Krácmar S, Kopecký J, Vacek J (2010) Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. J Pharm Biomed Anal 51:464–470PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pádua D, Rocha E, Gargiulo D, Ramos AA (2016) Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett 14:91–98CrossRefGoogle Scholar
  79. Pankiewicz R, Łęska B, Messyasz B, Fabrowska J, Sołoducha M, Pikosz M (2016) First isolation of polysaccharidic ulvans from the cell walls of freshwater algae. Algal Res 19:348–354CrossRefGoogle Scholar
  80. Pavia H, Toth GB (2000) Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiologia 440:299–305CrossRefGoogle Scholar
  81. Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129:491–498CrossRefGoogle Scholar
  82. Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L (2003) Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res 48:543–549PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pielesz A (2010) Algi i alginiany – leczenie, zdrowie i uroda [Algae and alginates – treatment, health and beauty], E-bookGoogle Scholar
  84. Qi H, Sun Y (2015) Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. Int J Biol Macromol 76:326–329PubMedCrossRefPubMedCentralGoogle Scholar
  85. Rao AR, Reddy AH, Aradhya SM (2010) Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts. Curr Trends Biotechnol Pharm 4:809–819Google Scholar
  86. Raposo JMF, de Morais BAMM, de Morais SCRM (2015) Carotenoids from marine microalgae: a valuable natural source for the prevention of chronic diseases. Mar Drugs 13:5128–5155PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rastogi RP, Richa SRP, Singh SP, Häder DP (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37:537–558PubMedCrossRefPubMedCentralGoogle Scholar
  88. Rivera SM, Canela-Garayoa R (2012) Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A 1224:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  89. Robic A, Lahaye M (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 6:1765–1774Google Scholar
  90. Robic A, Sassi JF, Dion P, Lerat Y, Lahaye M (2009) Seasonal variability of physicochemical and rheological properties of ulvan in two Ulva species (Chlorophyta) from the Brittany Coast. J Phycol 45:962–973PubMedCrossRefPubMedCentralGoogle Scholar
  91. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353PubMedPubMedCentralCrossRefGoogle Scholar
  92. Samarkoon K, Jeon YJ (2012) Bio-functionalities of proteins derived from marine algae – a review. Food Res Int 48:948–960CrossRefGoogle Scholar
  93. Sánchez-Camargo AP, Mendiola JA, Ibáñez E, Herrero M (2014) Supercritical fluid extraction. In: Reedjik J (ed) Elsevier reference module in chemistry, Molecular Sciences and Chemical Engineering, MA. Elsevier, WalthamGoogle Scholar
  94. Schagerl M, Pichler C (2000) Pigment composition of freshwater charophyceae. Aquat Bot 67:117–129CrossRefGoogle Scholar
  95. Schroeder G, Łęska B, Fabrowska J, Messyasz B, Pikosz M (2015) Analysis of green algae extract. In: Kim S-K, Chojnacka K (ed) Marine algae extracts: processes, products, and applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 81–99Google Scholar
  96. Sebök S, Herppich WB, Hanelt D (2017) Development of an innovative ring-shaped cultivation system for a land-based cultivation of marine macroalgae. Aquac Eng 77:33–41CrossRefGoogle Scholar
  97. Serisawa Y, Yokohama Y, Aruga Y, Tanaka J (2004) Dark respiration of the stipe of Ecklonia cava (Laminariales, Phaeophyta) in relation to temperature. Phycol Res 52:174–179CrossRefGoogle Scholar
  98. Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531–559PubMedPubMedCentralGoogle Scholar
  99. Shimoda H, Tanaka J, Shan SJ, Maoka T (2010) Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol 62:1137–1145PubMedCrossRefPubMedCentralGoogle Scholar
  100. Siddhanta AK, Goswami AM, Ramavat BK, Mody KH, Mairh OP (2001) Water soluble polysaccharides of marine algal species of Ulva (Ulvales, Chlorophyta) of Indian waters. Indian J Mar Sci 30:166–172Google Scholar
  101. Silberfeld T, Rousseau F, de Reviers B (2014) An updated classification of brown algae (Ochrophyta, Phaeophyceae). Cryptogam Algol 35:117–156CrossRefGoogle Scholar
  102. Soltani S, Saadatmand S, Khavarinejad R, Nejadsattari T (2011) Antioxidant and antibacterial activities of Cladophora glomerata (L.) Kütz. in Caspian Sea Coast. Iran Afr J Biotechnol 10:7684–7689Google Scholar
  103. Starmach K (1972) Zielenice nitkowate [Green alga] (In: Flora słodkowodna Polski [Freshwater flora of Poland] Ed. K. Starmach) – PWN, Warszawa-KrakówGoogle Scholar
  104. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501CrossRefPubMedGoogle Scholar
  105. Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmet Toiletries 120:99–106Google Scholar
  106. Sun Y, Chang R, Li Q, Li B (2016) Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur Food Res Technol 242:685–692CrossRefGoogle Scholar
  107. Surget G, Roberto VP, Le Lann K, Mira S, Guerard F, Laize V, Poupart N, Cancela ML, Stiger-Pouvreau V (2017) Seasonal phenology and metabolomics of the introduced red macroalga Gracilaria vermiculophylla, monitored in the Bay of Brest (France). J Appl Phycol 29:575–584CrossRefGoogle Scholar
  108. Szopa A, Ekiert R, Ekiert H (2017) Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem Rev 16:195–218PubMedCrossRefPubMedCentralGoogle Scholar
  109. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tonnesen HH, Karlsen J (2002) Alginate in drug delivery system. Drug Dev Ind Pharm 28:621–630PubMedCrossRefPubMedCentralGoogle Scholar
  111. Van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  112. Verkleij FN (1992) Seaweed extracts in agriculture and horticulture – a review. Biol Agric Hortic 8:309–324CrossRefGoogle Scholar
  113. Vilchez C, Forjan E, Cuaresma M, Bedmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226PubMedCrossRefPubMedCentralGoogle Scholar
  115. Widomska J, Kostecka-Gugała A, Latowski D (2009) Calorimetric studies of the effect of cis-carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers. Biophys Chem 140:108–114PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yildiz G, Celikler S, Vatan O, Dere S (2012) Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida C. Agardh. Int J Food Prop 15:1182–1189CrossRefGoogle Scholar
  117. Yu PZ, Zhang QB, Li N, Xu ZH, Wang YM, Li ZE (2003) Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J Appl Phycol 15:21–27CrossRefGoogle Scholar
  118. Zhou H, Ren J, Li Z (2017) Antibacterial activity and mechanism of pinoresinol from Cinnamomum Camphora leaves against food-related bacteria. Food Control 79:192–199CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bogusława Łęska
    • 1
    Email author
  • Beata Messyasz
    • 2
  • Grzegorz Schroeder
    • 1
  1. 1.Faculty of ChemistryAdam Mickiewicz University in PoznanPoznanPoland
  2. 2.Faculty of Biology, Department of HydrobiologyAdam Mickiewicz University in PoznanPoznanPoland

Personalised recommendations