Biology of Freshwater Macroalgae and Their Distribution

  • Beata MessyaszEmail author
  • Marta Pikosz
  • Ewa Treska
Part of the Developments in Applied Phycology book series (DAPH, volume 8)


Cosmopolitan taxa of freshwater macroalgae occurring in inland waters in mass are described with respect to their biology. One of their components is autecology, which concerns the relations of individual organisms to the various factors of their environment. The factors influencing the fluctuations of macroalgal populations (e.g., Cladophora, Oedogonium) and the formations of their life strategies as primary producers can inform us about the possibility of their use in various branches of industry.


Filamentous algae Macroalgae Growth forms Morphology Competitive interactions 


  1. Adhikary SP, Sahu JK (1992) Distribution and seasonal abundance of algal forms in Chilka Lake, East Coast of India. Jpn J Limnol (Rikusuigaku Zasshi) 53(3):197–205CrossRefGoogle Scholar
  2. Alcaraz JLM, Canales LM, Sanjurjo MA (2013) Morphological description and ecology of some rare macroalgae in south-central Spanish rivers (Castilla-La Mancha Region). An Jard Bot Madrid 70(1):81–90CrossRefGoogle Scholar
  3. Bellinger EG, Sigee DC (2010) Freshwater algae: identification and use as bioindicators. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  4. Berner T, Dubinsky Z, Wyman K, Falkowski PG (1989) Photoadaptation and the “package effect” in Dunaliella tertiolecta (Chlorophyceae). J Phycol 25(1):70–78CrossRefGoogle Scholar
  5. Bischof K, Peralta G, Kräbs G, van de Poll WH, Pérez-Lloréns JL, Breeman AM (2002) Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain. J Exp Bot 53(379):2411–2421CrossRefPubMedGoogle Scholar
  6. Blomster J, Hoey EM, Maggs CA, Stanhope MJ (2000) Species-specific oligonucleotide probes for macroalgae: molecular discrimination of two marine fouling species of Enteromorpha (Ulvophyceae). Mol Ecol 2:177CrossRefGoogle Scholar
  7. Borja A, Bricker SB, Dauer DM, Demetriades NT, Ferreira JG, Forbes AT, Hutchings P, Jia X, Kenchington R, Carlos Marques J, Zhu C (2008) Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Mar Pollut Bull 56:1519–1537CrossRefPubMedGoogle Scholar
  8. Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8:21–32CrossRefGoogle Scholar
  9. Burchardt L, Messyasz B, Owsianny PM, Pełechata A, Stefaniak K (2003) Chlorococcales algae from four lakes in the Slowinski National Park (northern Poland). Biologia (Bratisl) 58(4):467–474Google Scholar
  10. Chemello R, Milazzo AM (2002) Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Mar Biol 140:981–990CrossRefGoogle Scholar
  11. Chmielewská E, Medved J (2001) Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon. Croat Chem Acta 74(1):135–145Google Scholar
  12. Chudyba H (1965) Cladophora glomerata and accompanying algae in the Skawa River. Acta Hydrobiol 7(1):93–126Google Scholar
  13. Dąmbska I, Karpiński J (1954) Ramienice, klucz do oznaczania gatunków krajowych. PWN, WarszawaGoogle Scholar
  14. Das S, Deshmukhe G, Dwivedi A (2014) Grazing of selected genera of green, red and brown macroalgae. Appl Ecol Environ Res 12(3):717–725CrossRefGoogle Scholar
  15. Dere S, Günes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–17Google Scholar
  16. Dodds WK, Gudder DA (1992) The ecology of Cladophora. J Phycol 28:415–427CrossRefGoogle Scholar
  17. Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41:87–112CrossRefGoogle Scholar
  18. Ensminger I, Hagen C, Braune W (2000) Strategies providing success in a variable habitat. II. Ecophysiology of photosynthesis of Cladophora glomerata. Plant Cell Environ 23:1129–1136CrossRefGoogle Scholar
  19. Ensminger I, Xyländer M, Hagen C, Braune W (2001) Strategies providing success in a variable habitat: III. Dynamic control of photosynthesis in Cladophora glomerata. Plant Cell Environ 24(8):769–779CrossRefGoogle Scholar
  20. Ensminger I, Schmidt L, Tittmann S, Lloyd J (2005) Will photosynthetic gain of boreal evergreen conifers increase in response to a potentially longer growing season? In: Carpentier R, Bruce D, van der Est A (eds) Photosynthesis: fundamental aspects to global perspectives, vol 2. Allen Press, Lawrence, pp 976–978Google Scholar
  21. Farina J, Castilla J, Ojeda F (2003) The idiosyncratic effect of a sentinel species on contaminated rocky intertidal communities. Ecol Appl 6:1533–1552CrossRefGoogle Scholar
  22. Fletcher RL (1996) The “Green Tide” problem. In: Schramm W, Nienhuis P (eds) Ecological studies, marine benthic vegetation. EEC, Brussels, pp 29–33Google Scholar
  23. Freeman MC (1986) The role of nitrogen and phosphorus in the development of Cladophora glomerata (L.) Kutzing in the Manawatu River, New Zealand. Hydrobiologia 131:23–30CrossRefGoogle Scholar
  24. Gąbka M (2007) Distribution of Chara tenuispina A. Braun 1835 (Characeae) in Poland. Oceanol Hydrobiol Stud 36(1):241–248Google Scholar
  25. Gąbka M (2009) Charophytes of the Wielkopolska region (NW Poland): distribution, taxonomy and autecology. Bogucki Wydawnictwo Naukowe Poznań, p 109Google Scholar
  26. Garcia ME, Aboal M (2014) Environmental gradients and macroalgae in Mediterranean marshes: the case of Pego-Oliva marsh (East Iberian Peninsula). Sci Total Environ 475:216–224CrossRefPubMedGoogle Scholar
  27. Gołdyn R, Messyasz B, Domek P (2013) The response of Lake Durowskie ecosystem to restoration measures. Carpathian J Earth Environ Sci 8(3):43–48Google Scholar
  28. Green L, Fong P (2015) The good, the bad and the Ulva: the density dependent role of macroalgal subsidies in influencing diversity and trophic structure of an estuarine community. Oikos.
  29. Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. Searched on 05–26.05.2017
  30. Hainz R, Wöber C, Schagerl M (2009) The relationship between Spirogyra (Zygnematophyceae, Streptophyta) filament type groups and environmental conditions in Central Europe. Aquat Bot 91(3):173–180CrossRefGoogle Scholar
  31. Hard DD (1992) Community organization in streams: the importance of species interactions, physical factors, and chance. Oecologia 91:220–228CrossRefGoogle Scholar
  32. Herbst RP (1969) Ecological factors and the distribution of Cladophora glomerata in the Great Lakes. Am Midl Nat 82:90–98CrossRefGoogle Scholar
  33. Higgins SN, Malkin SY, Howell TE (2008) An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes. J Phycol 44(4):839–854CrossRefPubMedGoogle Scholar
  34. Hoffmann JP, Graham LE (1984) Effects of selected physicochemical factors on growth and zoosporogenesis of Cladophora glomerata (Chlorophyta). J Phycol 20:1–7CrossRefGoogle Scholar
  35. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22(2):415–427CrossRefGoogle Scholar
  36. Irfanullah HM, Moss B (2005) A filamentous green algae-dominated temperate shallow lake: variations on the theme of clear-water stable states? Arch Hydrobiol 163(1):25–47CrossRefGoogle Scholar
  37. John R, Kusber WH, Romero OE (2009) Cocconeis pediculus Ehrenberg and C. placentula Ehrenberg var. placentula (Bacillariophyta): typification and taxonomy. Fottea 9(2):275–288CrossRefGoogle Scholar
  38. Khanum A (1982) An ecological study of freshwater algal mats. Bot Bull Acad Sin 23:89–104Google Scholar
  39. Khuantrairong T, Traichaiyaporn S (2009) Production of biomass, carotenoid and nutritional values of Cladophora sp. (Kai) by cultivation in mass culture. Phycologia 48(4 Supplement):60Google Scholar
  40. Kitner M, Poulićková A (2003) Littoral diatoms as indicators for the eutrophication of shallow lakes. Hydrobiologia 506–509:519–524CrossRefGoogle Scholar
  41. Krause-Jensen D, McGlathery K, Rysgaard S, Christensen PB (1996) Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Mar Ecol Prog Ser 134:207–216CrossRefGoogle Scholar
  42. Krause-Jensen D, Christensen PB, Rysgaard S (1999) Oxygen and nutrient dynamics within mats of the filamentous macroalga Chaetomorpha linum. Estuaries 22:31–38CrossRefGoogle Scholar
  43. Leliaert F, Verbruggen H, Wysor B, De Clerck O (2000) DNA taxonomy in morphologically plastic taxa: algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales). Mol Phylogenet Evol 53:122–133CrossRefGoogle Scholar
  44. Leliaert F, Smith DR, Moreau H, Herron M, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46CrossRefGoogle Scholar
  45. Lenzenweger R (1999) Desmidiaceenflora von Österreich, Teil 3. Bibliotheca Phycologica Band, vol 104. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Berlin, pp 1–218Google Scholar
  46. Lenzi M, Renzi M, Nesti U, Gennaro P, Persia E, Porello S (2011) Vegetation cyclic shift in eutrophic lagoon. Assessment of dystrophic risk indices based on standing crop evaluation. Estuar Coast Shelf Sci 132:99–107CrossRefGoogle Scholar
  47. Lenzi M, Gennaro P, Mercatali I, Persia E, Solari D, Porello S (2013) Physicochemical and nutrient variable stratifications in the water column and in macroalgal thalli as a result of high biomass mats in a non-tidal shallow-water lagoon. Mar Pollut Bull 75(1–2):98–104CrossRefPubMedGoogle Scholar
  48. Lester WW, Adams MS, Farmer AM (1988) Effects of light and temperature on photosynthesis of the nuisance alga Cladophora glomerata (L.) Kütz from Green Bay, Lake Michigan. New Phycol 109:53–58CrossRefGoogle Scholar
  49. Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochem Soc Trans 11:591–592CrossRefGoogle Scholar
  50. Malta E, Draisma SGA, Kamermans P (1999) Free-floating Ulva in the southwest Netherlands: species or morphotypes? A morphological, molecular and ecological comparison. Eur J Phycol 34:443–454CrossRefGoogle Scholar
  51. Markager S, Sand-Jensen K (1996) Implications of thallus thickness for growth-irradiance relationships of marine macroalgae. Eur J Phycol 31:79–87CrossRefGoogle Scholar
  52. McGlathery KJ, Krause-Jensen D, Rysgaard S, Christensen PB (1997) Patterns of ammonium uptake within dense mats of the filamentous macroalga Chaetomorpha linum. Aquat Bot 59:99–115CrossRefGoogle Scholar
  53. Messyasz B, Kuczyńska-Kippen N (2006) Periphytic algal communities: a comparison of Typha angustifolia L. and Chara tomentosa L. beds in three shallow lakes (West Poland). Pol J Ecol 54(1):15–27Google Scholar
  54. Messyasz B, Rybak A (2009) The distribution of green algae species from the Enteromorpha genera [syn. Ulva; Chlorophyta] in Polish inland waters. Oceanol Hydrobiol Stud 38(1):121–138CrossRefGoogle Scholar
  55. Messyasz B, Rybak A (2011) Abiotic factors affecting the development of Ulva sp. (Ulvophyceae; Chlorophyta) in freshwater ecosystems. Aquat Ecol 45(1):75–87CrossRefGoogle Scholar
  56. Messyasz B, Pikosz M, Rybak A, Łepkowska K (2012) Epiphytic diatom community and calcium carbonate crystals characteristics on the surface of freshwater Ulva thalli. Teka Kom Ochr Kszt Środ Przyr – OL PAN 9:96–106Google Scholar
  57. Messyasz B, Łęska B, Fabrowska J, Pikosz M, Rój E, Cieślak A, Schroeder G (2015a) Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chem 13:1108–1118. CrossRefGoogle Scholar
  58. Messyasz B, Łęska B, Fabrowska J, Pikosz M, Cieślak A, Schroeder G (2015b) Effects of organic compounds on the macroalgae culture of freshwater Aegagropila. Open Chem 13:1040–1044Google Scholar
  59. Messyasz B, Pikosz M, Schroeder G, Łęska B, Fabrowska J (2015c) Chapter 2: Identification and ecology of macroalgae species existing in Poland. In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes, products and applications, 1st edn, pp 17–39Google Scholar
  60. Michalak I, Chojnacka K (2009) Edible macroalga Ulva prolifera as microelemental feed supplement for livestock: the fundamental assumptions of the production method. World J Microbiol Biotechnol 25:997–1005CrossRefGoogle Scholar
  61. Michalak I, Dmytryk A, Wieczorek PP, Rój E, Łęska B, Górka B, Messyasz B, Lipok J, Mikulewicz M, Wilk R, Schroeder G, Chojnacka K (2015) Supercritical algal extracts: a source of biologically active compounds from nature. J Chem – Hindawi 2015:597140. CrossRefGoogle Scholar
  62. Michalak I, Górka B, Wieczorek PP, Rój E, Lipok J, Łęska B, Messyasz B, Wilk R, Schroeder G, Dobrzyńska-Inger A, Chojnacka K (2016) Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur J Phycol 51:243–252. CrossRefGoogle Scholar
  63. Michalak I, Chojnacka K, Saeid A (2017) Plant growth biostimulants, dietary feed, supplements and cosmetics formulated with supercritical CO2 algal extracts. Molecules 22(66):1–17. CrossRefGoogle Scholar
  64. Miyata M, Okazaki M, Furuya K (1977) Site and nature of calcium carbonate deposits on calcareous Brown alga Padina japonica – (Studies on the calcium carbonate deposition of alga). Bull Jpn Soc Phycol 25:1–6Google Scholar
  65. Montoya-Moreno Y, Aguirre-Ramírez N (2013) Knowledge to ecological preferences in a tropical epiphytic algae to use with eutrophication indicators. J Environ Protect 4:27–35CrossRefGoogle Scholar
  66. Ozimek T (1990) Aspects of the ecology of a filamentous alga in a eutrophicated lake. Hydrobiologia 191:23–27CrossRefGoogle Scholar
  67. Painter DS, Kamaitis G (1987) Reduction of Cladophora biomass and tissue phosphorus in lake Ontario, 1972–83. Can J Fish Aquat Sci 44(12):2212–2215CrossRefGoogle Scholar
  68. Pankiewicz R, Łęska B, Messyasz B, Fabrowska J, Sołoducha M, Pikosz M (2016) First isolation of polisacharidic ulvans from the cell wall of freshwater algae. Algal Res 19:348–354. CrossRefGoogle Scholar
  69. Pascelli C, Riul P, Riosmena-Rodriguez R, Scherner F, De Castro Nunes JM, Hall-Spencer JM, de Oliveira EC, Horta PA (2013) Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil). Aquat Bot 111:62–65CrossRefGoogle Scholar
  70. Pełechaty M (2005) Does spatially varied phytolittoral vegetation with significant contribution of charophytes cause spatial and temporal heterogeneity of physical-chemical properties of the pelagic waters of a tachymictic lake? Polish J Environ Stud 14(5):63–73Google Scholar
  71. Pełechaty M, Gąbka M (2003) Two approaches to lake-naturalness determination – a case study from four mid-forest Polish lakes. Polish J Environ Stud 12(4):440–445Google Scholar
  72. Philips DJH (1990) Use of macroalgae and invertebrates as monitor of heavy metals in estuaries and coastal waters. In: Furness RW, Rainbow PS (eds) Heavy metals in marine environment. CRC Press, Boca Raton, pp 81–99Google Scholar
  73. Pieczyńska E (1988) Rola makrolitów w kształtowaniu trofii jezior. Wiad Ekol 34(4):375–404Google Scholar
  74. Pieczyńska E (2008) Eutrofizcja płytkich jezior – znaczenie makrofitów. Wiad Ekol 54(1):3–28Google Scholar
  75. Pieczyńska E, Tarmanowska A (1996) Effect of decomposing filamentous algae on the growth of Elodea canadensis Michx. (a laboratory experiment). Aquat Bot 54:313–319CrossRefGoogle Scholar
  76. Pikosz M, Messyasz B (2015a) Composition and seasonal changes in filamentous algae in floating mats. Oceanol Hydrobiol Stud 44(2):273–281CrossRefGoogle Scholar
  77. Pikosz M, Messyasz B (2015b) New data to distribution, morphology and ecology of Oedogonium capillare Kützing ex Hirn (Oedogoniales, Chlorophyta) in Central Europe (Poland). Biodivers Res Conserv 40:31–36Google Scholar
  78. Pikosz M, Messyasz B (2016) Characteristic of Cladophora and coexisting filamentous algae against a background of environmental factors in freshwater ecosystems in Poland. Oceanol Hydrobiol Stud 45(2):202–2015CrossRefGoogle Scholar
  79. Pikosz M, Messyasz B, Gąbka M (2017) Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland. Ecol Indic 74:1–9. CrossRefGoogle Scholar
  80. Poulićková A, Hašler P, Lysaková M, Spears B (2008) The ecology of freshwater epipelic algae: an update. Phycologia 47(5):437–450CrossRefGoogle Scholar
  81. Reynolds CS (1988) Functional morphology and the adaptive strategies of freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 388–433Google Scholar
  82. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge, p 535CrossRefGoogle Scholar
  83. Rybak A, Messyasz B, Łęska B (2012) Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg). Chemosphere 89:1066–1076CrossRefPubMedGoogle Scholar
  84. Sakayama H (2008) Taxonomy of Nitella (Charales, Charophyceae) based on comparative morphology of oospores and multiple DNA marker phylogeny using cultured material. Phycol Res 56:202–215CrossRefGoogle Scholar
  85. Sakayama H, Kasai F, Nozaki H, Watanabe MM, Kawachi M, Shigyo M, Nishihiro J, Washitani I, Krienitz L, Ito M (2009) Taxonomic reexamination of Chara globularis (Charales, Charophyceae) from Japan based on oospore morphology and rbcL gene sequences, and the description of C. leptospora sp. nov. J Phycol 45:917–927CrossRefPubMedGoogle Scholar
  86. Salisbury FB, Ross CW (1978) Plant physiology, 2nd edn. Wadsworth Publ. Co., Inc, BelmontGoogle Scholar
  87. Saunders LL, Kilham SS, Fairchild GW, Verb R (2012) Effects of small-scale environmental variation on metaphyton condition and community composition. Freshw Biol 57:1884–1895. CrossRefGoogle Scholar
  88. Scheffer M (2001) Alternative attractors of shallow lakes. Sci World 1:254–263CrossRefGoogle Scholar
  89. Simons J, van Beem AP (1990) Spirogyra species and accompanying algae from pools and ditches in The Netherlands. Aquat Bot 37(3):247–269CrossRefGoogle Scholar
  90. Stewart HL, Carpenter RC (2003) The effects of morphology and water flow on photosynthesis of marine macroalgae. Ecology 84(11):2999–3012CrossRefGoogle Scholar
  91. Thybo-Christesen M, Blackburn TH (1993) Internal N-cycling, measured by 15NH4 + dilution, in Cladophora sericea in a shallow Danish bay. Mar Ecol Prog Ser 100:283–296CrossRefGoogle Scholar
  92. Van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology, 1st edn. Cambridge University Press, Cambridge, p 623Google Scholar
  93. Vergara JJ, Pérez-Lloréns JL, Peralta G, Hernández I, Niell FX (1997) Seasonal variation of photosynthetic performance and light attenuation in Ulva canopies from Palmones river estuary. J Phycol 33:773–779CrossRefGoogle Scholar
  94. Weiss A, Costa R, Wichard T (2017) Morphogenesis of Ulva mutabilis (Chlorophyta) induced by Maribacter species (Bacteroidetes, Flavobacteriaceae). Bot Mar 60(2):197–206CrossRefGoogle Scholar
  95. Whitton BA (1970) Biology of freshwater Cladophora. Water Res 4:457–476CrossRefGoogle Scholar
  96. Whitton BA (1984) Algae as monitors of heavy metals in freshwaters. In: Shubert LE (ed) Algae as ecological indicators. Academic, London, pp 257–280Google Scholar
  97. Wosnitza MAT, Barrantes JG (2005) Utilization of seaweed Ulva sp. in Paracas Bay (Peru): experimenting with compost. J Appl Phycol 18:27–31CrossRefGoogle Scholar
  98. Yniguez AT, McManus JW, Collado-Vides L (2015) Consequences of morphological plasticity and fragmentation on space occupation of coral reef macroalgae. Ecol Model 309–310:128–142CrossRefGoogle Scholar
  99. Yoshii Y, Hanyuda T, Wakana K, Miyaji K, Arai S, Ueda K, Inouye I (2004) Carotenoid compositions of Cladophora balls (Aegagropila linnaei) and some members of the Cladophorales (Ulvophyceae, Chlorophyta): their taxonomic and evolutionary implication. J Phycol 40:1170–1177CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Biology, Department of HydrobiologyAdam Mickiewicz University in PoznanPoznanPoland

Personalised recommendations