An Ab Initio Study of Boric Acid, Borate, and their Interconversion

  • Cory C. PyeEmail author
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


The chemistry of boric acid and monomeric borates is reviewed. Following a discussion of the crystal structures and nuclear magnetic resonance studies, ab initio results are presented of molecular ortho- and metaboric acid, (tetrahydroxo)borate, and the hydrates of orthoboric acid and borate. The structures and vibrational frequencies are compared with experiment. Attempts to study their interconversion lead us to a discussion of oxodihydroxoborate (the conjugate base of boric acid), and of the hydroxide-boric acid complex. It is hypothesized that the conversion of boric acid into borate proceeds via the oxodihydroxoborate intermediate. Finally, the calculated structures of hydroxodioxo- and trioxoborate are compared with experiment.


Boric acid Borate Ab initio 



The author acknowledges the Atlantic Computational Excellence Network (ACEnet) for computational support.

Supplementary material

432170_1_En_8_MOESM1_ESM.pdf (260 kb)
Supplementary material 1 (PDF 260 kb).


  1. 1.
    Richens DT (1997) The chemistry of aqua ions. Wiley, ChichesterGoogle Scholar
  2. 2.
    Oi T (2000) Calculations of reducted partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J Nucl Sci Tech 37(2):166–172CrossRefGoogle Scholar
  3. 3.
    Oi T (2000) Ab initio molecular orbital calculations of reduced partition function ratios of polyboric acids and polyborate anions. Z Naturforsch A 55:623–628CrossRefGoogle Scholar
  4. 4.
    Oi T, Yanase S (2001) Calculations of reduced partition function ratios of hydrated monoborate anion by the ab initio molecular orbital theory. J Nucl Sci Tech 38:429–432CrossRefGoogle Scholar
  5. 5.
    Zeebe RE (2005) Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4. Geochim Cosmochim Acta 69:2753–2766CrossRefGoogle Scholar
  6. 6.
    Liu Y, Tossell JA (2005) Ab initio molecular orbital calculations for boron isotope fractionation on boric acids and borates. Geochim Cosmochim Acta 69:3995–4006CrossRefGoogle Scholar
  7. 7.
    Tossell JA (2005) Boric acid, “carbonic” acid, and N-containing oxyacids in aqueous solution: ab initio studies of structure, pKa, NMR shifts, and isotopic fractionation. Geochim Cosmochim Acta 69:5647–5658CrossRefGoogle Scholar
  8. 8.
    Rustad JR, Bylaska EJ (2007) Ab initio calculation of isotopic fractionation in B(OH)3(aq) and B(OH)4(aq). J Am Chem Soc 129:2222–2223CrossRefPubMedGoogle Scholar
  9. 9.
    Rustad JR, Bylaska EJ, Jackson VE, Dixon DA (2010) Calculation of boron-isotope fractionation between B(OH)3(aq) and B(OH)4-(aq). Geochim Cosmochim Acta 74:2843–2850CrossRefGoogle Scholar
  10. 10.
    Zeebe RE, Sanyal A, Ortiz JD, Wolf-Gladrow DA (2001) A theoretical study of the kinetics of the boric acid-borate equilibrium in seawater. Marine Chem 73:113–124CrossRefGoogle Scholar
  11. 11.
    Kracek FC, Morey GW, Merwin HE (1938) The system, water-boron oxide. Am J Sci A 35:143–171Google Scholar
  12. 12.
    Blasdale WC, Slansky CM (1939) The solubility curves of boric acid and the borates of sodium. J Am Chem Soc 61:917–920CrossRefGoogle Scholar
  13. 13.
    Berger SV (1953) The crystal structure of boron oxide. Acta Chem Scand 7:611–622CrossRefGoogle Scholar
  14. 14.
    Strong SL, Kaplow R (1968) The structure of crystalline B2O3. Acta Crystallogr B 24:1032–1036CrossRefGoogle Scholar
  15. 15.
    Gurr GE, Montgomery PW, Knutson CD, Gorres BT (1970) The crystal structure of trigonal diboron trioxide. Acta Crystallogr B 26:906–915CrossRefGoogle Scholar
  16. 16.
    Effenberger H, Lengauer CL, Parthe E (2001) Trigonal B2O3 with higher space-group symmetry: results of a reevaluation. Monat Chem 132:1515–1517CrossRefGoogle Scholar
  17. 17.
    Prewitt CT, Shannon RD (1968) Crystal structure of a high-pressure form of B2O3. Acta Crystallogr B 24:869–874CrossRefGoogle Scholar
  18. 18.
    Zachariasen WH (1934) The crystal lattice of boric acid, BO3H3. Z Kristallogr 88:150–161Google Scholar
  19. 19.
    Cowley JM (1953) Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure. Acta Crystallogr 6:522–529CrossRefGoogle Scholar
  20. 20.
    Zachariasen WH (1954) The precise structure of orthoboric acid. Acta Crystallogr 7:305–310CrossRefGoogle Scholar
  21. 21.
    Shuvalov RR, Burns PC (2003) A new polytype of orthoboric acid, H3BO3-3T1. Acta Crystallogr C 59:i47–i49CrossRefPubMedGoogle Scholar
  22. 22.
    Tazaki H (1940) Single crystals of metaboric acid. J Sci Hiroshima Univ A 10:37–54Google Scholar
  23. 23.
    Tazaki H (1940) The structure of orthorhombic metaboric acid, HBO2(a). J Sci Hiroshima Univ A 10:55–61Google Scholar
  24. 24.
    Peters CR, Milberg ME (1964) The refined structure of orthorhombic metaboric acid. Acta Crystallogr 17:229–234CrossRefGoogle Scholar
  25. 25.
    Zachariasen WH (1952) A new analytical method for solving complex crystal structures. Acta Crystallogr 5:68–73CrossRefGoogle Scholar
  26. 26.
    Zachariasen WH (1963) The crystal structure of monoclinic metaboric acid. Acta Crystallogr 16:385–389CrossRefGoogle Scholar
  27. 27.
    Freyhardt CC, Wiebcke M, Felsche J (2000) The monoclinic and cubic phases of metaboric acid (precise redeterminations). Acta Crystallogr C 56:276–278CrossRefPubMedGoogle Scholar
  28. 28.
    Zachariasen WH (1963) The crystal structure of cubic metaboric acid. Acta Crystallogr 16:380–384CrossRefGoogle Scholar
  29. 29.
    Konig H, Hoppe R (1977) Zur Kenntnis von Na3BO3. Z Anorg Allg Chem 434:225–232CrossRefGoogle Scholar
  30. 30.
    Menchetti S, Sabelli C (1982) Structure of hydrated sodium borate Na2[BO2(OH)]. Acta Crystallogr B 38:1282–1284CrossRefGoogle Scholar
  31. 31.
    Block S, Perloff A (1963) The direct determination of the crystal structure of NaB(OH)42H2O. Acta Crystallogr 16:1233–1238CrossRefGoogle Scholar
  32. 32.
    Csetenyi LJ, Glasser FP, Howie RA (1993) Structure of sodium tetrahydroxyborate. Acta Crystallogr C 49:1039–1041CrossRefGoogle Scholar
  33. 33.
    Touboul M, Betourne E, Nowogrocki G (1995) Crystal structure and dehydration process of Li(H2O)4B(OH)4.2H2O. J Solid State Chem 115:549–553CrossRefGoogle Scholar
  34. 34.
    Zachariasen WH (1964) The crystal structure of lithium metaborate. Acta Crystallogr 17:749–751CrossRefGoogle Scholar
  35. 35.
    Hohne E (1964) Die Kristallstruktur des LiB(OH)4. Z Chem 4:431–432CrossRefGoogle Scholar
  36. 36.
    Fronczek FR, Aubry DA, Stanley GG (2001) Refinement of lithium tetrahydroxoborate with low-temperature CCD data. Acta Crystallogr E 57:i62–i63CrossRefGoogle Scholar
  37. 37.
    Onak TP, Landesman H, Williams RE, Shapiro I (1959) The B11 nuclear magnetic resonance chemical shifts and spin coupling values for various compounds. J Phys Chem 63:1533–1535CrossRefGoogle Scholar
  38. 38.
    Momii RK, Nachtrieb NH (1967) Nuclear magnetic resonance study of borate-polyborate equilibria in aqueous solution. Inorg Chem 6:1189–1192CrossRefGoogle Scholar
  39. 39.
    How MJ, Kennedy GR, Mooney EF (1969) The pH dependence of the boron-11 chemical-shift of borate-boric acid solutions. J Chem Soc D Chem Commun 267–268CrossRefGoogle Scholar
  40. 40.
    Smith HDJ, Wiersema RJ (1972) Boron-11 nuclear magnetic resonance study of polyborate ions in solution. Inorg Chem 11:1152–1154CrossRefGoogle Scholar
  41. 41.
    Covington AK, Newman KE (1973) Base dissociation constant of the borate ion from 11B chemical shifts. J Inorg Nucl Chem 35:3257–3262CrossRefGoogle Scholar
  42. 42.
    Henderson WG, How MJ, Kennedy GR, Mooney EF (1973) The interconversion of aqueous boron species and the interaction of borate with diols: a 11B N.M.R. study. Carbohydrate Res 28:1–12CrossRefGoogle Scholar
  43. 43.
    Janda R, Heller G (1979) 11B–NMR-spektroskopische Untersuchungen an waessrigen Polyboratloesungen. Z Naturforsch B 34:1078–1083CrossRefGoogle Scholar
  44. 44.
    Epperlein BW, Lutz O, Schwenk A (1975) Fourier-Kernresonanzuntersuchungen an 10B und 11B in Waessriger Loesung. Z Naturforsch A 30:955–958Google Scholar
  45. 45.
    Salentine CG (1983) High-field 11B NMR of alkali borates. Aqueous polyborate equilibria. Inorg Chem 22:3920–3924CrossRefGoogle Scholar
  46. 46.
    Frisch MJ et al (2004) Gaussian 03, Revision D.02. Gaussian Inc., Wallingford, CTGoogle Scholar
  47. 47.
    Gupta A, Tossell JA (1981) A theoretical study of bond distances, X-ray spectra and electron density distributions in borate polyhedra. Phys Chem Miner 7:159–164CrossRefGoogle Scholar
  48. 48.
    Gupta A, Tossell JA (1983) Quantum mechanical studies of distortions and polymerization of borate polyhedra. Am Miner 68:989–995Google Scholar
  49. 49.
    Zhang ZG, Boisen MBJ, Finger LW, Gibbs GV (1985) Molecular mimicry of the geometry and charge density distribution of polyanions in borate minerals. Am Miner 70:1238–1247Google Scholar
  50. 50.
    Zaki K, Pouchan C (1995) Vibrational analysis of orthoboric acid H3BO3 from ab initio second-order perturbation calculations. Chem Phys Lett 236:184–188CrossRefGoogle Scholar
  51. 51.
    Tian SX, Xu KZ, Huang M-B, Chen XJ, Yang JL, Jia CC. Theoretical study on infrared vibrational spectra of boric-acid in gas-phase using density functional methods. J Mol Struct (Theochem) 459:223–227, 459CrossRefGoogle Scholar
  52. 52.
    Tachikawa M (2004) A density functional study on hydrated clusters of orthoboric acid, B(OH)3(H2O)n (n = 1–5). J Mol Struct (Theochem) 710:139–150CrossRefGoogle Scholar
  53. 53.
    Stefani D, Pashalidis I, Nicolaides AV (2008) A computational study of the conformations of the boric acid (B(OH)3), its conjugate base ((HO)2BO) and borate anion (B(OH)4). J Mol Struct (Theochem) 853:33–38CrossRefGoogle Scholar
  54. 54.
    Zhou Y, Fang C, Fang Y, Zhu F (2011) Polyborates in aqueous borate solution: a Raman and DFT theory investigation. Spectrochim Acta A 83:82–87CrossRefGoogle Scholar
  55. 55.
    Ananthakrishnan R (1936) The Raman spectra of some boron compounds (methyl borate, ethyl borate, boron tri-bromide and boric acid). Proc Indian Acad Sci A 4:74–81Google Scholar
  56. 56.
    Ananthakrishnan R (1937) The Raman spectra of crystal powders. IV. Some organic and inorganic compounds. Proc Indian Acad Sci A 5:200–221Google Scholar
  57. 57.
    Hibben JH (1938) The constitution of some boric oxide compounds. Am J Sci A 35:113–125Google Scholar
  58. 58.
    Mitra SM (1938) Raman effect in boric acid and in some boron compounds. Ind J Phys 12:9–14Google Scholar
  59. 59.
    Kahovec L (1938) Studien zum Raman-Effekt. Mitteilung LXXXV. Borsauere und Derivate. Z Phys Chem 40:135–145Google Scholar
  60. 60.
    Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294CrossRefGoogle Scholar
  61. 61.
    Bethell DE, Sheppard N (1955) The infra-red spectrum and structure of boric acid. Trans Faraday Soc 51:9–15CrossRefGoogle Scholar
  62. 62.
    Servoss RR, Clark HM (1957) Vibrational spectra of normal and isotopically labeled boric acid. J Chem Phys 26:1175–1178CrossRefGoogle Scholar
  63. 63.
    Maya L (1976) Identification of polyborate and fluoropolyborate ions in solution by Raman spectroscopy. Inorg Chem 15:2179–2184CrossRefGoogle Scholar
  64. 64.
    Maeda M, Hirao T, Kotaka M, Kakihana H (1979) Raman spectra of polyborate ions in aqueous solution. J Inorg Nucl Chem 41:1217–1220CrossRefGoogle Scholar
  65. 65.
    Janda R, Heller G (1979) Ramanspektroskopische Untersuchungen an festen und in Wasser geloesten Polyboraten. Z Naturforsch B 34:585–590CrossRefGoogle Scholar
  66. 66.
    Ogden JS, Young NA (1988) The characterisation of molecular boric acid by mass spectrometry and matrix isolation infrared spectroscopy. J Chem Soc Dalton Trans 1645–1652Google Scholar
  67. 67.
    Gilson TR (1991) Characterization of ortho- and meta-boric acids in the vapour phase. J Chem Soc Dalton Trans 2463–2466Google Scholar
  68. 68.
    Andrews L, Burkholder TR (1992) Infrared spectra of molecular B(OH)3 and HOBO in solid argon. J Chem Phys 97:7203–7210CrossRefGoogle Scholar
  69. 69.
    Gupta A, Swanson DK, Tossell JA, Gibbs GV (1981) Calculation of bond distances, one-electron properties and electron density distributions in first-row tetrahedral hydroxy and oxyanions. Am Miner 66:601–609Google Scholar
  70. 70.
    Hess AC, McMillan PF, O’Keeffe M (1988) Torsional barriers and force fields in H4TO4 molecules and molecular ions (T = C, B, Al, Si). J Phys Chem 92:1785–1791CrossRefGoogle Scholar
  71. 71.
    Nielsen JR, Ward NE (1937) Raman spectrum and structure of the metaborate ion. J Chem Phys 5:201CrossRefGoogle Scholar
  72. 72.
    Edwards JO, Morrison GC, Ross VF, Schultz JW (1955) The structure of the aqueous borate ion. J Am Chem Soc 77:266–268CrossRefGoogle Scholar
  73. 73.
    Oertel RP (1972) Raman study of aqueous monoborate-polyol complexes. Equilibria in the monoborate-1,2-ethanediol system. Inorg Chem 11:544–549CrossRefGoogle Scholar
  74. 74.
    Liu Z, Gao B, Hu M, Li S, Xia S (2003) FT-IR and Raman spectroscopic analysis of hydrated cesium borates and their saturated aqueous solution. Spectrochim Acta A 59:2741–2745CrossRefGoogle Scholar
  75. 75.
    Zhu FY, Fang CH, Fang Y, Zhou YQ, Ge HW, Liu HY (2014) Structure of aqueous potassium metaborate solution. J Mol Struct 1070:80–85CrossRefGoogle Scholar
  76. 76.
    Attina M, Cacace F, Occhiucci G, Ricci A (1992) Gaseous borate and polyborate anions. Inorg Chem 31:3114–3117CrossRefGoogle Scholar
  77. 77.
    Waton G, Mallo P, Candau SJ (1984) Temperature-jump rate study of the chemical relaxation of aqueous boric acid solutions. J Phys Chem 88:3301–3305CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySaint Mary’s UniversityHalifaxCanada

Personalised recommendations