Advertisement

Relativistic Quantum Chemistry and Spectroscopy of Exotic Atomic Systems with Accounting for Strong Interaction Effects

  • O. Yu. Khetselius
  • A. V. Glushkov
  • Yu. V. Dubrovskaya
  • Yu. G. Chernyakova
  • A. V. Ignatenko
  • I. N. Serga
  • L. A. Vitavetskaya
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)

Abstract

We present the fundamentals of a consistent relativistic theory of spectra of the exotic pionic atomic systems on the basis of the Klein-Gordon-Fock equation approach and relativistic many-body perturbation theory (electron subsystem). The key feature of the theory is simultaneous accounting for the electromagnetic and strong pion-nuclear interactions by means of using the generalized radiation and strong pion-nuclear optical potentials. The nuclear and radiative corrections are effectively taken into account. The modified Uehling-Serber approximation is used to take into account for the Lamb shift polarization part. In order to take into account the contribution of the Lamb shift self-energy part we have used the generalized non-perturbative procedure, which generalizes the Mohr procedure and radiation model potential method by Flambaum-Ginges. There are presented data of calculation of the energy and spectral parameters for pionic atoms of the 93Nb, 173Yb, 181Ta, 197Au, with accounting for the radiation (vacuum polarization), nuclear (finite size of a nucleus) and the strong pion-nuclear interaction corrections. The measured values of the Berkley, CERN and Virginia laboratories and alternative data based on other versions of the Klein-Gordon-Fock theories with taking into account for a finite size of the nucleus in the model uniformly charged sphere and the standard Uehling-Serber radiation correction are listed too.

Keywords

Relativistic quantum chemistry Spectroscopy of exotic atoms Relativistic perturbation theory Energy approach Nuclear and radiative corrections Pionic atomic systems 

References

  1. 1.
  2. 2.
    Ericson T, Weise W (1988) Pions and Nuclei. Clarendon, OxfordGoogle Scholar
  3. 3.
    Deloff A (2003) Fundamentals in Hadronic Atom Theory. World Sci, SingaporeGoogle Scholar
  4. 4.
    Khetselius OYu (2011) Quantum structure of electroweak interaction in heavy finite fermi-systems. Astroprint, Odessa Google Scholar
  5. 5.
    Deslattes R, Kessler E, Indelicato P, de Billy L, Lindroth E, Anton J (2003) Exotic atoms. Rev Mod Phys 75:35CrossRefGoogle Scholar
  6. 6.
    Backenstoss G (1970) Ann Rev Nucl Sci 20:467Google Scholar
  7. 7.
    Menshikov LI, Evseev MK (2001) Phys Uspekhi 171:150Google Scholar
  8. 8.
    Scherer S (2003) In: Negele JW, Vogt EW (eds) Advances in nuclear physics, vol 27. Springer, Berlin, pp 5–50Google Scholar
  9. 9.
    Schroder H, Badertscher A, Goudsmit P, Janousch M, Leisi H, Matsinos E, Sigg D, Zhao Z, Chatellard D, Egger J, Gabathuler K, Hauser P, Simons L, El Hassani A (2001) J Phys C21:473Google Scholar
  10. 10.
    Leon M, Seki R (1974) Phys Rev Lett 32:132Google Scholar
  11. 11.
    Batty CJ, Eckhause M, Gall KP et al. (1989) Phys Rev C 40:2154Google Scholar
  12. 12.
    Chen MY, Asano Y, Cheng SC, Dugan G, Hu E, Lidofsky L, Patton W, Wu CS (1975) Nucl Phys A 254:413CrossRefGoogle Scholar
  13. 13.
    Olaniyi B, Shor A, Cheng S, Dugan G, Wu CS (1982) Nucl Phys A 403:572CrossRefGoogle Scholar
  14. 14.
    Erikcson M, Ericson T, Krell M (1969) Phys Rev Lett 22:1189Google Scholar
  15. 15.
    Erikcson M, Ericson T (1966) Ann Phys 36:323Google Scholar
  16. 16.
    Tauscher L (1971) Analysis of pionic atoms and the p-nucleus optical potential. In: Proceedings of the international semantic p-Meson nucleus interaction-CNRS-strasbourg, France, p 45Google Scholar
  17. 17.
    Batty C, Biagi S, Friedman E, Hoath S (1983) Phys Rev Lett 440:931; Batty C J, Friedman E, Gal A (1978) Nucl Phys A 402:411Google Scholar
  18. 18.
    Seki R, Masutani K, Jazaki K (1983) Phys Rev C 27:1817Google Scholar
  19. 19.
    Rowe G, Salamon M, Landau RH (1978) Phys Rev C 18:584Google Scholar
  20. 20.
    Anagnostopoulos D, Biri S, Boisbourdain V, Demeter M, Borchert G et al. (2003) Nucl Inst Meth B 205:9Google Scholar
  21. 21.
    Anagnostopoulos D, Gotta D, Indelicato P, Simons LM (2003) arXiv:physics.0312090v1
  22. 22.
    Nagels MM, de Swart J, Nielsen H et al (1976) Nucl Phys B 109:1CrossRefGoogle Scholar
  23. 23.
    Lauss B (2009) Nucl Phys A 827C, 401 PSI experiment R-98.01http://pihydrogen.psi.ch
  24. 24.
    CERN DIRAC Collaboration (2011) Search for long-lived states of p+ p and pK atoms, CERN-SPSLC-2011–001 SPSLC-P-284-ADD p 22Google Scholar
  25. 25.
    Umemoto Y, Hirenzaki S, Kume K, Toki H, Tahihata I (2001) Nucl Phys A 679:549CrossRefGoogle Scholar
  26. 26.
    Nose-Togawa N, Hirenzaki S, Kume K (1999) Nucl Phys A 646:467CrossRefGoogle Scholar
  27. 27.
    Glushkov AV, Malinovskaya SV, Gurnitskaya EP, Khetselius OYu, Dubrovskaya YuV (2006) J Phys: Conf Ser 35:425Google Scholar
  28. 28.
    Hatsuda T, Kunihiro T (1994) Phys Rep 247:221Google Scholar
  29. 29.
    Ikeno N, Kimura R, Yamagata-Sekihara J, Nagahiro H, Jido D, Itahashi K et al. (2011) 1107.5918v1[nucl-th]Google Scholar
  30. 30.
    Kolomeitsev EE, Kaiser N, Weise W (2003) Phys Rev Lett 90:092501Google Scholar
  31. 31.
    Lyubovitskij V, Rusetsky A (2000) Phys Lett B 494:9Google Scholar
  32. 32.
    Schlesser S, Le Bigot E-Q, Indelicato P, Pachucki K (2011) Phys Rev C 84:015211Google Scholar
  33. 33.
    Sigg D, Badertscher A, Bogdan M, Goudsmit P, Leisi H, Schröder H, Zhao Z, Chatellard D, Egger J, Jeannet E, Aschenauer E, Gabathuler K, Simons L (1996) Rusi El Hassan A. Nucl Phys A 609:269CrossRefGoogle Scholar
  34. 34.
    Gotta D, Amaro F, Anagnostopoulos D, Biri S, Covita D, Gorke H, Gruber A, Hennebach M, Hirtl A, Ishiwatari T, Indelicato P, Jensen T, Bigot E, Marton J, Nekipelov M, dos Santos J, Schlesser S, Schmid P, Simons L, Strauch H, Trassinelli M, Veloso J, Zmeskal J ed. Kania Y, Yamazaki Y (AIP) (2008) CP1037, 162Google Scholar
  35. 35.
    Gotta D, Amaro F, Anagnostopoulos D, Biri S, Covita D, Gorke H, Gruber A, Hennebach M, Hirtl A, Ishiwatari T, Indelicato P, Jensen T, Bigot E, Marton J, Nekipelov M, dos Santos J, Schlesser S, Schmid P, Simons L, Strauch H, Trassinelli M, Veloso J, Zmeskal (2008) Precision physics of simple atoms and molecules. In: Lecture notes in physics, vol 745, Springer, Berlin, Heidelberg, pp 165–186Google Scholar
  36. 36.
    Taal A, D’Achard van Enschut J, Berkhput J et al (1985) Phys Lett B 156:296CrossRefGoogle Scholar
  37. 37.
    Taal A, David P, Hanscheid H, Koch JH, de Laat CT et al (1990) Nucl Phys A 511:573CrossRefGoogle Scholar
  38. 38.
    de Laat CT, Taal A, Konijn J et al (1991) Nucl Phys A 523:453CrossRefGoogle Scholar
  39. 39.
    de Laat CT, Taal A, Duinker W et al (1987) Phys Lett B 189:7CrossRefGoogle Scholar
  40. 40.
    Khetselius OYu, Turin AV, Sukharev DE, Florko TA  (2009) Sensor Electr and Microsyst Techn N1, 30–35Google Scholar
  41. 41.
    Mohr PJ (1993) Atom Dat Nucl Dat Tabl 24:453; (1983) Phys Scripta 46:44Google Scholar
  42. 42.
    Indelicato P (1996) Phys Scripta T65:57; Indelicato P, Trassinelli M (2005) arXiv:physics.0510126v1
  43. 43.
    Glushkov AV, Malinovskaya SV (2003) In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear physics. World Sci, Singapore, pp 242–250Google Scholar
  44. 44.
    Santos J, Parente F, Boucard S, Indelicato P, Desclaux J (2005) Phys Rev A 71:032501Google Scholar
  45. 45.
    Mitroy J, Ivallov IA (2001) J Phys G Nucl Part Phys 27:1421Google Scholar
  46. 46.
    Strauch T (2009) High-precision measurement of strong-interaction effects in pionic deuterium, JulichGoogle Scholar
  47. 47.
    Serot B, Walecka J (1986) Relativistic nuclear many body problem. In: Advances in nuclear physics, Plenum Press, N-YGoogle Scholar
  48. 48.
    Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33Google Scholar
  49. 49.
    Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, pp 58–160Google Scholar
  50. 50.
    Ivanova EP, Glushkov AV (1986) J Quant Spectr Rad Transfer 36:127Google Scholar
  51. 51.
    Glushkov AV, Khetselius OYu, Gurnitskaya EP,  Loboda AV, Florko TA, Sukharev DE, Lovett L (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in Theoretical Chemistry and Physics, vol 1. Springer, Dordrecht, pp 507–524Google Scholar
  52. 52.
    Flambaum VV, Ginges JSM (2005) Phys Rev A 72:052115Google Scholar
  53. 53.
    Safranova UI, Safranova MS, Johnson WR (2005) Phys Rev A 71:052506Google Scholar
  54. 54.
    Glushkov AV, Malinovskaya SV, Khetselius OYu,  Loboda AV, Sukharev DE, Lovett L (2009) Int J Quant Chem 109:1717Google Scholar
  55. 55.
    Gurnitskaya EP,  Khetselius OYu, Loboda AV, Vitavetskaya LA (2008) Photoelectronics 17:127Google Scholar
  56. 56.
    Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Int J Quant Chem 104:562 Google Scholar
  57. 57.
    Johnson W, Sapirstein J, Blundell S (1993) Phys Scripta T 46:184Google Scholar
  58. 58.
    Glushkov AV (2006) Relativistic and correlation effects in spectra of atomic systems, Astroprint, OdessaGoogle Scholar
  59. 59.
    Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Europ Phys Journ ST 160:195Google Scholar
  60. 60.
    Buyadzhi VV,  Glushkov AV,  Lovett L (2014) Photoelectronics 23:38Google Scholar
  61. 61.
    Glushkov AV, Ambrosov SV, Loboda AV, Chernyakova GYu, Svinarenko AA,  Khetselius OY (2004) Nucl Phys A Nucl Hadr Phys 734:21Google Scholar
  62. 62.
    Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OY (2006) Recent advances in the theory of chemical and physical systems. In: Julien P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 15. Springer, Dordrecht, pp 285–299Google Scholar
  63. 63.
    Glushkov AV (2005) AIP Conf Proceedings 796 (1): 206–210Google Scholar
  64. 64.
    Glushkov AV, Lovett L, Khetselius OYu, Gurnitskaya EP, Dubrovskaya YuV, Loboda AV (2009) Int J Mod Phys A 24:611Google Scholar
  65. 65.
    Glushkov AV, Khetselius OY and Lovett L (2009) Advances in the theory of atomic and molecular systems. Dynamics, spectroscopy, clusters and nanostructures. In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Progress in theoretical chemistry and physics, vol 20. Springer, Dordrecht, pp 125–152Google Scholar
  66. 66.
    Khetselius OY (2012) Quantum systems in chemistry and physics. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 217–229Google Scholar
  67. 67.
    Khetselius OYu (2009) Int J Quant Chem 109:3330Google Scholar
  68. 68.
    Khetselius OYu (2009) Phys Scripta T135:014023Google Scholar
  69. 69.
    Khetselius OYu (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 29. Springer, Cham, pp 55–76Google Scholar
  70. 70.
    Khetselius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, OdessaGoogle Scholar
  71. 71.
    Glushkov AV, Khetselius OYu, Svinarenko AA (2013) Phys Scripta T153:014029Google Scholar
  72. 72.
    Glushkov AV, Khetselius OY, Svinarenko AA (2012) Advances in the theory of quantum systems in chemistry and physics. In: Hoggan P, Brändas E, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 22. Springer, Dordrecht, pp 51–68Google Scholar
  73. 73.
    Khetselius O, Florko T, Svinarenko A, Tkach T (2013) Phys Scripta T153: 014037Google Scholar
  74. 74.
    Khetselius OYu (2010) AIP Conf Proc 1290:29Google Scholar
  75. 75.
    Khetselius OYu, Florko TA, Nikola LV, Svinarenko AA,  Serga IN, Tkach TB,  Mischenko EV (2010) Quantum Theory: reconsideration of foundations (AIP). 1232:243Google Scholar
  76. 76.
    Serga IN, Dubrovskaya YV, Kvasikova AS, Shakhman AN, Sukharev DE (2012) J Phys Conf Ser 397:012013Google Scholar
  77. 77.
    Serga IN (2013) Photoelectronics 22:71; Shakhman AN (2015) Photoelectronics 24:109Google Scholar
  78. 78.
    Sukharev DE, Khetselius OYu and Dubrovskaya YuV (2009) Sensor Electr and Microsyst Techn N3, 16–21Google Scholar
  79. 79.
    Bystryantseva AN, Khetselius OYu, Dubrovskaya YuV, Vitavetskaya LA,  Berestenko AG (2016) Photoelectronics 25:56Google Scholar
  80. 80.
    Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems, Astroprint, Odessa, 700pGoogle Scholar
  81. 81.
    Ivanov LN, Letokhov VS (1985) Com Mod Phys D 4:169; Ivanov LN, Ivanova EP, Aglitsky EV (1988) Phys Rep 166:315Google Scholar
  82. 82.
    Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) Phys Scripta 32:513Google Scholar
  83. 83.
    Glushkov AV, Kondratenko PA, Buyadgi VV, Kvasikova AS, Sakun TN, Shakhman AN (2014)  J  Phys: Conf Ser  548:012025Google Scholar
  84. 84.
    Svinarenko AA,  Glushkov AV, Khetselius OYu, Ternovsky VB, Dubrovskaya YuV, Kuznetsova AA, Buyadzhi VV (2017) In: Rare Earth Element, (ed) Orjuela JEA. InTech, pp 83–104Google Scholar
  85. 85.
    Glushkov AV, Khetselius OYu, Svinarenko AA, Buyadzhi  VV, Ternovsky VB,  Kuznetsova AA, Bashkarev PG (2017) In: Uzunov DI (ed) Recent studies in perturbation theory. InTech, pp 131–150Google Scholar
  86. 86.
    Baldwin GG, Salem JC, Goldansky VI (1981) Rev Mod Phys 53:687; Goldansky VI, Letokhov VS (1974) JETP 67:513; Ivanov LN, Letokhov VS (1975) JETP 68:1748Google Scholar
  87. 87.
    Glushkov AV, Khetselius O, Gurnitskaya E, Loboda A, Sukharev D (2009) AIP Conf Proc 1102 (1):168Google Scholar
  88. 88.
    Ivanov LN, Letokhov VS, Glushkov AV (1991) Preprint of Inst. for Spectroscopy of USSR Acad Sci (ISAN) AS-N5Google Scholar
  89. 89.
    Glushkov AV (2013) Advances in quantum methods and applications in chemistry, physics and biology. In: Hotokka M, Brändas E, Maruani J, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 27. Springer, Cham, pp 161–177Google Scholar
  90. 90.
    Glushkov AV,  Ambrosov SV,  Loboda AV,  Gurnitskaya EP, Khetselius OYu (2006) Recent advances in theoretical physics and chemistry systems. In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 15. Springer, Dordrecht, pp 285–299Google Scholar
  91. 91.
    Glushkov AV (2012) Quantum systems in chemistry and physics. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 231–252Google Scholar
  92. 92.
    Khetselius OYu, Zaichko PA, Smirnov AV, Buyadzhi VV, Ternovsky VB, Florko TA, Mansarliysky VF (2017) Quantum systems in physics, Chemistry and biology. In: Tadjer A, Pavlov R, Maruani J, Brändas J, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 30. Springer, Cham, pp 271–281Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • O. Yu. Khetselius
    • 1
  • A. V. Glushkov
    • 1
  • Yu. V. Dubrovskaya
    • 1
  • Yu. G. Chernyakova
    • 1
  • A. V. Ignatenko
    • 1
  • I. N. Serga
    • 1
  • L. A. Vitavetskaya
    • 1
  1. 1.Odessa State Environmental UniversityOdessaUkraine

Personalised recommendations