Advertisement

Synthetic Biology Enables Photosynthetic Production of Limonene from CO2 and H2O

  • Charles Halfmann
  • Liping Gu
  • William Gibbons
  • Ruanbao Zhou
Chapter

Abstract

  • The physical and chemical properties of limonene, a C10 isoprenoid with applications in green solvents, pharmaceuticals, perfumes, and food flavorings

  • An overview of efforts to genetically engineer cyanobacteria to synthesize limonene

  • Perspectives on developing integrated systems to produce limonene at the industrial-scale

Keywords

Cyanobacteria Limonene Isoprenoids Metabolic engineering 

References

  1. Adam P, Hecht S, Eisenreich W, Kaiser J, Gräwert T, Arigoni D, Bacher A, Rohdich F (2002) Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc Natl Acad Sci U S A 99(19):12108–12113CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alonso WR, Rajaonarivony J, Gershenzon J, Croteau R (1992) Purification of 4S-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita) and spearmint (Mentha spicata). J Biol Chem 267(11):7582–7587PubMedGoogle Scholar
  3. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41.  https://doi.org/10.1016/j.ymben.2013.05.004 CrossRefPubMedGoogle Scholar
  4. Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31(8):1043–1055.  https://doi.org/10.1039/c3np70124g CrossRefPubMedGoogle Scholar
  5. Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109(1):100–109CrossRefPubMedGoogle Scholar
  6. Bentley FK, García-Cerdán JG, Chen H-C, Melis A (2013) Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. BioEnergy Res 6(3):917–929CrossRefGoogle Scholar
  7. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86.  https://doi.org/10.1093/mp/sst134 CrossRefPubMedGoogle Scholar
  8. Berry DA (2010) Engineering organisms for industrial fuel production. Bioeng Bugs 1(5):303–308CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95(8):4126–4133.  https://doi.org/10.1073/pnas.95.8.4126 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brennan TC, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109(10):2513–2522CrossRefPubMedGoogle Scholar
  11. Budavari S (1989) The Merck Index, ll edn. Merck, Rahway, NJ, p 865Google Scholar
  12. Burdock GA, Fenaroli G (2010) Fenaroli’s handbook of flavor ingredients, 6th edn. CRC Press/Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  13. Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Biol 46(1):521–547CrossRefGoogle Scholar
  14. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefPubMedGoogle Scholar
  15. Clayton GD, Clayton FE, Allan RE, Patty FA (1991) Patty’s industrial hygiene and toxicology, 4th edn. Wiley, New YorkGoogle Scholar
  16. Clerico EM, Ditty JL, Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362:155–171.  https://doi.org/10.1007/978-1-59745-257-1_11 CrossRefPubMedGoogle Scholar
  17. Cohen JE (2003) Human population: the next half century. Science 302(5648):1172–1175CrossRefPubMedGoogle Scholar
  18. Colby SM, Alonso WR, Katahira EJ, Mcgarvey DJ, Croteau R (1993) 4s-limonene synthase from the oil glands of spearmint (Mentha-spicata) – cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem 268(31):23016–23024PubMedGoogle Scholar
  19. Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129(3):775S–778SCrossRefPubMedGoogle Scholar
  20. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21.  https://doi.org/10.3389/fbioe.2014.00021 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Donald KAG, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63(9):3341–3344PubMedPubMedCentralGoogle Scholar
  22. Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103.  https://doi.org/10.1016/j.tibtech.2010.12.003 CrossRefPubMedGoogle Scholar
  23. Duetz W, Bouwmeester H, Van Beilen J, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61(4):269–277CrossRefPubMedGoogle Scholar
  24. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7(1)CrossRefGoogle Scholar
  25. Eaton-Rye JJ (2004) The construction of gene knockouts in the cyanobacterium Synechocystis sp. PCC 6803. Methods Mol Biol 274:309–324.  https://doi.org/10.1385/1-59259-799-8:309 CrossRefPubMedGoogle Scholar
  26. Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754CrossRefPubMedGoogle Scholar
  27. Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CP (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179(6):1998–2005CrossRefPubMedPubMedCentralGoogle Scholar
  28. Englund E, Pattanaik B, Ubhayasekera SJK, Stensjö K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9(3):e90270CrossRefPubMedPubMedCentralGoogle Scholar
  29. Flavor and Extract Manufacturers’ Association (1991) d-Limonene monographa. Washington, pp 1–4Google Scholar
  30. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309(5734):570–574CrossRefGoogle Scholar
  31. Frigaard N-U, Sakuragi Y, Bryant DA (2004) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Photosynth Res Protoc 274:325–340CrossRefGoogle Scholar
  32. Golden SS, Brusslan J, Haselkorn R (1986) Genetic engineering of the cyanobacterial chromosome. Methods Enzymol 153:215–231CrossRefGoogle Scholar
  33. Grigorieva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett 13(4):367–370CrossRefGoogle Scholar
  34. Gründel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158(Pt 12):3032–3043CrossRefPubMedGoogle Scholar
  35. Halfmann C, Gu L, Gibbons W, Zhou R (2014a) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98(23):9869–9877CrossRefPubMedGoogle Scholar
  36. Halfmann C, Gu LP, Zhou RB (2014b) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16(6):3175–3185.  https://doi.org/10.1039/c3gc42591f CrossRefGoogle Scholar
  37. Harrewijn P (2001) Natural terpenoids as messengers: a multidisciplinary study of their production, biological functions, and practical applications. Springer Science & Business MediaGoogle Scholar
  38. Hellier P, Al-Haj L, Talibi M, Purton S, Ladommatos N (2013) Combustion and emissions characterization of terpenes with a view to their biological production in cyanobacteria. Fuel 111:670–688CrossRefGoogle Scholar
  39. Hepler L (2015) Joule raises $40 million to rev up alt-fuel industry, Green Biz (May 11, 2015). https://www.greenbiz.com/article/joule-unlimited-40-million-funding-alternative-fuel-industry
  40. Hooser SB (1990) D-limonene, linalool, and crude citrus oil extracts. Vet Clin N Am Small Anim Pract 20(2):383–385CrossRefGoogle Scholar
  41. Hooser S, Beasley V, Everitt J (1986) Effects of an insecticidal dip containing d-limonene in the cat. J Am Vet Med Assoc 189(8):905–908PubMedGoogle Scholar
  42. Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593.  https://doi.org/10.1093/nar/gkq164 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, Kang C (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci U S A 104(13):5360–5365.  https://doi.org/10.1073/pnas.0700915104 CrossRefPubMedPubMedCentralGoogle Scholar
  44. IARC (1993) IARC monographs on the evaluation of carcinogenic risks to humans, vol 56, Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins, Lyon, pp 135–162Google Scholar
  45. Johnson TJ, Jahandideh A, Johnson MD, Fields KH, Richardson JW, Muthukumarappan K, Cao Y, Gu Z, Halfmann C, Zhou R (2016) Producing next-generation biofuels from filamentous cyanobacteria: an economic feasibility analysis. Algal Res 20:218–228CrossRefGoogle Scholar
  46. Karr LL, Coats JR (1988) Insecticidal properties of d-limonene. J Pestic Sci 13(2):287–290CrossRefGoogle Scholar
  47. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195.  https://doi.org/10.1016/j.ymben.2012.01.004 CrossRefPubMedGoogle Scholar
  48. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355CrossRefPubMedGoogle Scholar
  49. Kiyota H, Okudac Y, Ito M, Hirai MY, Ikeuchi M (2014) Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol 185:1–7.  https://doi.org/10.1016/j.jbiotec.2014.05.025 CrossRefPubMedGoogle Scholar
  50. Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58(2):123–137.  https://doi.org/10.1007/s00253-001-0864-9 CrossRefPubMedGoogle Scholar
  51. Kudoh K, Kawano Y, Hotta S, Sekine M, Watanabe T, Ihara M (2014) Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-D-xylulose 5-phosphate synthase and carbon allocation analysis. J Biosci Bioeng 118(1):20–28CrossRefPubMedGoogle Scholar
  52. Lane J (2013) Algenol hits 9K gallons/acre mark for algae-to-ethanol process. Biofuels Digest (Mar 11, 2013). http://www.biofuelsdigest.com/bdigest/2013/03/11/algenol-hits-9k-gallonsacre-mark-for-algae-to-ethanol-process
  53. Langlois A, Lebel O (2010) To cyclopropanate or not to cyclopropanate? A look at the effect of cyclopropanation on the performance of biofuels. Energy Fuel 24(9):5257–5263CrossRefGoogle Scholar
  54. Larrañaga MD, Lewis RJ, Lewis RA, Hawley GG (2016) Hawley’s condensed chemical dictionary, 16th edn. Wiley, Hoboken, NJCrossRefGoogle Scholar
  55. Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol 50:47–65.  https://doi.org/10.1146/annurev.arplant.50.1.47 CrossRefGoogle Scholar
  56. Lide DR (1991) CRC handbook of chemistry and physics, 72nd edn. CRC Press, Boca Raton, FL, pp 3–308Google Scholar
  57. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79CrossRefPubMedGoogle Scholar
  58. Mann MS, Lutke-Eversloh T (2013) Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnol Bioeng 110(3):887–897.  https://doi.org/10.1002/bit.24758 CrossRefPubMedGoogle Scholar
  59. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802.  https://doi.org/10.1038/nbt833 CrossRefPubMedGoogle Scholar
  60. Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135(4):1908–1927CrossRefPubMedPubMedCentralGoogle Scholar
  61. Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci U S A 104(33):13268–13272CrossRefPubMedPubMedCentralGoogle Scholar
  62. National Toxicology Program (1990) NTP technical report series 347:1–165. PMID 12704437Google Scholar
  63. National Toxicology Program (1991) NTP chemical repository data sheet: d-Limonene, Research, Triangle Park, NCGoogle Scholar
  64. Okada K, Hase T (2005) Cyanobacterial non-mevalonate pathway (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase interacts with ferredoxin in thermosynechococcus elongatus BP-1. J Biol Chem 280(21):20672–20679CrossRefPubMedGoogle Scholar
  65. Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172CrossRefPubMedGoogle Scholar
  66. Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328CrossRefPubMedGoogle Scholar
  67. Perez-Gil J, Rodriguez-Concepcion M (2013) Metabolic plasticity for isoprenoid biosynthesis in bacteria. Biochem J 452:19–25.  https://doi.org/10.1042/Bj20121899 CrossRefPubMedGoogle Scholar
  68. Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91(3):471–490.  https://doi.org/10.1007/s00253-011-3394-0 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rajaonarivony JI, Gershenzon J, Croteau R (1992) Characterization and mechanism of (4S)-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita). Arch Biochem Biophys 296(1):49–57CrossRefPubMedGoogle Scholar
  70. Ranganna S, Govindarajan V, Ramana K, Kefford J (1983) Citrus fruits—varieties, chemistry, technology, and quality evaluation. Part II. Chemistry, technology, and quality evaluation. A. Chemistry. Crit Rev Food Sci Nutr 18(4):313–386CrossRefPubMedGoogle Scholar
  71. Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD, Keasling JD, Lee TS, Mukhopadhyay A, Petzold CJ (2011) Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng 13(2):194–203.  https://doi.org/10.1016/j.ymben.2010.12.005 CrossRefPubMedGoogle Scholar
  72. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574.  https://doi.org/10.1039/a709175c CrossRefPubMedGoogle Scholar
  73. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274–281CrossRefPubMedGoogle Scholar
  74. Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2(3):136–149CrossRefGoogle Scholar
  75. Schulz H (1972) D-limonene recovery in the Florida citrus industry. Citrus Eng Conf TransGoogle Scholar
  76. Seemann M, Bui BTS, Wolff M, Miginiac-Maslow M, Rohmer M (2006) Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett 580(6):1547–1552CrossRefPubMedGoogle Scholar
  77. Shestakov S, Khyen NT (1970) Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet MGG 107(4):372–375CrossRefPubMedGoogle Scholar
  78. Simonsen JL (1947) The terpenes, 2d edn. University Press, CambridgeGoogle Scholar
  79. STN lnternational (1992) HODOC Database, Columbus, OHGoogle Scholar
  80. Sun J (2007) D-Limonene: safety and clinical applications. Altern Med Rev 12(3):259PubMedGoogle Scholar
  81. Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci U S A 95(19):11482–11488.  https://doi.org/10.1073/pnas.95.19.11482 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I, Fujiwara S, Tsuzuki M, Nakamura Y (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76(10):3153–3159CrossRefPubMedPubMedCentralGoogle Scholar
  83. The Nielsen Company (2015) Green generation: millennials say sustainability is a shopping priority. The Nielsen Company (Nov 5, 2015). http://www.nielsen.com/us/en/insights/news/2015/green-generation-millennials-say-sustainability-is-a-shopping-priority.html
  84. Thiel T, Poo H (1989) Transformation of a filamentous cyanobacterium by electroporation. J Bacteriol 171(10):5743–5746CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tsuda H, Ohshima Y, Nomoto H, Fujita K-I, Matsuda E, Iigo M, Takasuka N, Moore MA (2004) Cancer prevention by natural compounds. Drug Metab Pharmacokinet 19(4):245–263CrossRefPubMedGoogle Scholar
  86. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489.  https://doi.org/10.1371/journal.pone.0004489 CrossRefPubMedPubMedCentralGoogle Scholar
  87. US Food and Drug Administration (1991) Substances generally recognized as safe – synthetic flavoring substances and adjuvants. US Code Fed Regul Title 21, Section 182.60, p 404Google Scholar
  88. Verghese J (1968) The chemistry of limonene and of its derivatives-Part I. Perfm Essent Oil Rec 59:439–454Google Scholar
  89. Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700.  https://doi.org/10.1146/annurev-arplant-050312-120116 CrossRefPubMedGoogle Scholar
  90. Wang X, Ort DR, Yuan JS (2015) Photosynthetic terpene hydrocarbon production for fuels and chemicals. Plant Biotechnol J 13(2):137–146CrossRefPubMedGoogle Scholar
  91. Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20(4):412–419CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wolk CP, Vonshak A, Kehoe P, Elhai J (1984) Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci 81(5):1561–1565CrossRefPubMedGoogle Scholar
  93. Xiao YL, Zahariou G, Sanakis Y, Liu PH (2009) IspG enzyme activity in the deoxyxylulose phosphate pathway: roles of the iron-sulfur cluster. Biochemistry 48(44):10483–10485.  https://doi.org/10.1021/bi901519q CrossRefPubMedGoogle Scholar
  94. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159.  https://doi.org/10.1016/j.copbio.2008.02.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charles Halfmann
    • 1
  • Liping Gu
    • 1
  • William Gibbons
    • 1
  • Ruanbao Zhou
    • 1
  1. 1.Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsUSA

Personalised recommendations