Advertisement

Biodiesel (Microalgae)

  • Karen M. Moll
  • Todd C. Pedersen
  • Robert D. Gardner
  • Brent M. Peyton
Chapter

Abstract

  • About the two predominant groups of microalgae, chlorophytes (green algae) and diatoms, and their respective primary carbon fixation methods

  • A diverse range of extreme environments where microalgae have been found, some of the characteristics of the microalgae found in these environments, and how to target different environments for algal product production

  • How microalgae are used in a conceptual biofuel production strategy including the various methods for growing, harvesting, and converting algal lipids and other products to biofuels and bioproducts

References Cited

  1. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manage 50(7):1834–1840.  https://doi.org/10.1016/j.enconman.2009.03.001CrossRefGoogle Scholar
  2. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86CrossRefGoogle Scholar
  3. Bhateria R, Dhaka R (2015) Algae as biofuel. Biofuels 5(6):607–631.  https://doi.org/10.1080/17597269.2014.1003701CrossRefGoogle Scholar
  4. Bigelow NW, Hardin WR, Barker JP, Ryken SA, MacRae AC, Cattolico RA (2011) A comprehensive GC–MS sub-microscale assay for fatty acids and its applications. J Am Oil Chem Soc 88(9):1329–1338CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borowitzka MA (1990) The mass culture of Dunaliella salina. In: Regional workshop on the culture and utilization of seaweeds, Cebu City (Philippines), 27–31 Aug 1990Google Scholar
  6. Borowitzka MA (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4(3):267–279CrossRefGoogle Scholar
  7. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577.  https://doi.org/10.1016/j.rser.2009.10.009CrossRefGoogle Scholar
  8. Burns NA (2010) Biomass--the next revolution in surfactants? Inform 21(727–729):779Google Scholar
  9. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefPubMedGoogle Scholar
  10. Cooksey KE (2015) Regulation of the initial events in microalgal triacylglycerol (TAG) synthesis: hypotheses. J Appl Phycol 27(4):1385–1387.  https://doi.org/10.1007/s10811-014-0461-9CrossRefGoogle Scholar
  11. Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6(6):333–345CrossRefGoogle Scholar
  12. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531.  https://doi.org/10.1016/j.apenergy.2011.04.018CrossRefGoogle Scholar
  13. Doemel WN, Brock T (1971) The physiological ecology of Cyanidium caldarium. Microbiology 67(1):17–32Google Scholar
  14. Eustance E, Gardner RD, Moll KM, Menicucci J, Gerlach R, Peyton BM (2013) Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea. J Appl Phycol 25(6):1663–1677CrossRefGoogle Scholar
  15. Gardner R, Peters P, Peyton B, Cooksey KE (2010) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23(6):1005–1016.  https://doi.org/10.1007/s10811-010-9633-4CrossRefGoogle Scholar
  16. Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, Carlson RP, Gerlach R, Fields MW, Peyton BM (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp and the diatom Phaeodactylum tricornutum. J Appl Phycol 24(5):1311–1320.  https://doi.org/10.1007/s10811-011-9782-0CrossRefGoogle Scholar
  17. Gardner RD, Lohman E, Gerlach R, Cooksey KE, Peyton BM (2013a) Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 110(1):87–96.  https://doi.org/10.1002/bit.24592CrossRefPubMedGoogle Scholar
  18. Gardner RD, Lohman EJ, Cooksey KE, Gerlach R, Peyton BM (2013b) Cellular cycling, carbon utilization, and photosynthetic oxygen production during bicarbonate-induced triacylglycerol accumulation in a Scenedesmus sp. Energies 6(11):6060–6076.  https://doi.org/10.3390/en6116060CrossRefGoogle Scholar
  19. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56(1):99–131.  https://doi.org/10.1146/annurev.arplant.56.032604.144052CrossRefPubMedGoogle Scholar
  20. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507.  https://doi.org/10.1007/s10811-008-9392-7CrossRefGoogle Scholar
  21. Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26(1):72–79CrossRefGoogle Scholar
  22. Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3(2):221–240CrossRefGoogle Scholar
  23. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103(30):11206–11210.  https://doi.org/10.1073/pnas.0604600103CrossRefPubMedGoogle Scholar
  24. Hise AM, Characklis GW, Kern J, Gerlach R, Viamajala S, Gardner RD, Vadlamani A (2016) Evaluating the relative impacts of operational and financial factors on the competitiveness of an algal biofuel production facility. Bioresour Technol 220:271–281CrossRefPubMedGoogle Scholar
  25. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639.  https://doi.org/10.1111/j.1365-313X.2008.03492.xCrossRefPubMedGoogle Scholar
  26. Hunt RW, Chinnasamy S, Bhatnagar A, Das K (2010) Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Appl Biochem Biotechnol 162(8):2400–2414CrossRefPubMedGoogle Scholar
  27. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2(3):191–200CrossRefPubMedGoogle Scholar
  28. Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Biol 50(1):539–570CrossRefGoogle Scholar
  29. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2008) Brock biology of microorganisms, 12th edn. Int Microbiol 11Google Scholar
  30. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31(8):1532–1542.  https://doi.org/10.1016/j.biotechadv.2013.07.011CrossRefPubMedGoogle Scholar
  31. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202.  https://doi.org/10.1016/j.watres.2014.07.025CrossRefPubMedGoogle Scholar
  32. Melack JM, Kilham P (1974) Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol Oceanogr 19(5):743–755CrossRefGoogle Scholar
  33. Moll KM, Gardner RD, Eustance EO, Gerlach R, Peyton BM (2014) Combining multiple nutrient stresses and bicarbonate addition to promote lipid accumulation in the diatom RGd-1. Algal Res 5:7–15.  https://doi.org/10.1016/j.algal.2014.04.002CrossRefGoogle Scholar
  34. Moroney JV, Somanchi A (1999) How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? Plant Physiol 119(1):9–16CrossRefPubMedPubMedCentralGoogle Scholar
  35. Moroney JV, Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6(8):1251–1259.  https://doi.org/10.1128/EC.00064-07CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol 81(1):92–96CrossRefPubMedPubMedCentralGoogle Scholar
  37. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686.  https://doi.org/10.1038/ncomms1688CrossRefPubMedPubMedCentralGoogle Scholar
  38. Reinfelder JR, Milligan AJ, Morel FM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135(4):2106–2111CrossRefPubMedPubMedCentralGoogle Scholar
  39. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40(3):259–268CrossRefGoogle Scholar
  40. Richards AM (2007) Identification and structural characterization of siderophores produced by halophilic and alkaliphilic bacteria. Washington State University, Washington, DCGoogle Scholar
  41. Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms. Photosynth Res 93(1–3):79–88CrossRefPubMedGoogle Scholar
  42. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43.  https://doi.org/10.1007/s12155-008-9008-8CrossRefGoogle Scholar
  43. Seckbach J (2007) Algae and cyanobacteria in extreme environments, vol 11. Springer, HeidelbergGoogle Scholar
  44. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5(5):1532–1553CrossRefGoogle Scholar
  45. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory 328Google Scholar
  46. Skorupa DJ, Castenholz RW, Mazurie A, Carey C, Rosenzweig F, McDermott TR (2014) In situ gene expression profiling of the thermoacidophilic alga Cyanidioschyzon in relation to visible and ultraviolet irradiance. Environ Microbiol 16(6):1627–1641CrossRefPubMedGoogle Scholar
  47. Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1(1):47–58CrossRefGoogle Scholar
  48. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters, vol 126. Wiley, New YorkGoogle Scholar
  49. Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzyme Microb Technol 7(10):474–487CrossRefGoogle Scholar
  50. USEPA (2016) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2014. USEPAGoogle Scholar
  51. Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol biofuels 5(1):1CrossRefGoogle Scholar
  52. Valenzuela J, Carlson R, Gerlach R, Cooksey K, Peyton BM, Bothner B, Fields MW (2013) Nutrient resupplementation arrests bio-oil accumulation in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97(15):7049–7059CrossRefPubMedPubMedCentralGoogle Scholar
  53. Williams PJB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554.  https://doi.org/10.1039/b924978hCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Karen M. Moll
    • 1
  • Todd C. Pedersen
    • 1
  • Robert D. Gardner
    • 2
  • Brent M. Peyton
    • 1
    • 3
  1. 1.Center for Biofilm EngineeringMontana State UniversityBozemanUSA
  2. 2.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Thermal Biology InstituteMontana State UniversityBozemanUSA

Personalised recommendations