Value-Added Products from Wastes Using Extremophiles in Biorefineries: Process Modeling, Simulation, and Optimization Tools

  • Elias Martinez-HernandezEmail author
  • Kok Siew Ng
  • Myriam A. Amezcua Allieri
  • Jorge A. Aburto Anell
  • Jhuma Sadhukhan


This chapter provides an overview of value-added production using extremophiles as well as the advantages and challenges for process development in a biorefinery concept. The chapter then shows a modeling framework that includes metabolic flux modeling, growth kinetics, and bioreactor models as well as process simulation. The model results are the basis for optimization, economic analysis, and life cycle assessment. The tools are applied to the production of poly-3-hydroxybutyrate (PHB) by using the halophilic bacteria Halomonas sp. The results highlighted the importance of relating models at the various scales and to look at the whole process picture to optimize the economic and environmental performances of the resulting biorefinery process. In the optimized process, the minimum PHB selling price was $7.05 per kg and the reduction in greenhouse gas emissions was 90%, with 0.708 kg CO-eq per kg of PHB. These results showed the potential for using halophilic bacteria to make PHB production competitive in terms of economics and environmental impacts. This also shows how extremophile processing will play a key role in making biorefineries more profitable and sustainable.


PHB Extremophiles Biorefinery Process modeling Halophilic bacteria 

List of Abbreviations


Adenosine triphosphate


Combined heat and power


Continuously stirred tank reactor


Greenhouse gas


Global warming potential


Life cycle assessment


Metabolic flux analysis


Nicotinamide adenine dinucleotide


Nicotinamide adenosine dinucleotide phosphate




Polylactic acid


Sodium dodecyl sulfonate



Financial support provided by the National Science Foundation in the form of BuG ReMeDEE initiative (Award # 1736255) is gratefully acknowledged by the editors.


  1. Aburto J, Martínez T, Murrieta F (2008) Evaluación técnica-económica de la producción de bioetanol a partir de residuos lignocelulósicos. Tecnología, Ciencia y Educación 23(1):23–30Google Scholar
  2. Barrera I, Amezcua-Allieri MA, Estupiñan L, Martínez T, Aburto J (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem Eng Res Des 107:91–101CrossRefGoogle Scholar
  3. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759CrossRefPubMedGoogle Scholar
  4. Bosma EF, van der Oost J, de Vos WM, van Kranenburg R (2013) Sustainable production of bio-based chemicals by extremophiles. Curr Biotechnol 2:360–379CrossRefGoogle Scholar
  5. Choi J, Lee SY (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17(6):335–342CrossRefGoogle Scholar
  6. Diario oficial. Ley de promoción y desarrollo de los bionergéticos. Camara de Diputados México (2008) Available from [21 Feb 2016]
  7. Dotsch A, Severin J, Alt W, Galinski EA, Kreft JU (2008) A mathematical model for growth and osmoregulation in halophilic bacteria. Microbiology 154:2956–2969CrossRefPubMedGoogle Scholar
  8. Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74:333–335CrossRefPubMedGoogle Scholar
  9. Garcia-Lillo J, Rodriguez-Valera F (1990) Effects of culture conditions on poly(3-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56(8):2517–2521Google Scholar
  10. Georgieva TI, Mikkelsen MJ, Ahring BK (2007) High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Cent Eur J Biol 2(3):364–377Google Scholar
  11. González-García Y, Meza-Contreras JC, González-Reynoso O, Córdova-López JA (2013) Síntesis y degradación de polihidroxialcanoatos plásticos de origen microbiano. Rev Int Contam Ambient 29:77–115Google Scholar
  12. Harding KG, Dennis JS, Von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130(1):57–66CrossRefPubMedGoogle Scholar
  13. ISO 14040. Environmental management – life cycle assessment – principles and framework. ISO 1997. Geneva, SwitzerlandGoogle Scholar
  14. Jin YX, Shi LH, Kawata Y (2013) Metabolomics-based component profiling of Halomonas sp. KM-1 during different growth phases in poly(3-hydroxybutyrate) production. Bioresour Technol 140:73–79CrossRefPubMedGoogle Scholar
  15. King D (2010) The future of industrial biorefineries. World Economic Forum, SwitzerlandGoogle Scholar
  16. Koller M, Muhr A (2014) Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem Biochem Eng 28(1):65–77Google Scholar
  17. Koller M, Horvat P, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G (2006) Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioprocess Biosyst Eng 29:367–377CrossRefPubMedGoogle Scholar
  18. Koller M, Atlic A, Gonzalez-Garcia Y, Kutschera C, Braunegg G (2008) Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 272:87–92CrossRefGoogle Scholar
  19. Kumar R, Nanavati H, Noronha SB, Mahajani SM (2006) A continuous process for the recovery of lactic acid by reactive distillation. J Chem Technol Biotechnol 81:1767–1777CrossRefGoogle Scholar
  20. Lorantfy B, Seyer B, Herwig C (2014) Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor. New Biotechnol 31(1):80–89CrossRefGoogle Scholar
  21. Martinez-Hernandez E, Campbell G, Sadhukhan J (2013a) Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chem Eng Res Des 91(8):1418–1426CrossRefGoogle Scholar
  22. Martinez-Hernandez E, Sadhukhan J, Campbell GM (2013b) Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis. Appl Energy 104:517–526CrossRefGoogle Scholar
  23. Mudliar SN, Vaidya AN, Kumar MS, Dahikar S, Chakrabarti T (2008) Techno-economic evaluation of PHB production from activated sludge. Clean Techn Environ Policy 10:255–262CrossRefGoogle Scholar
  24. NNFCC. National Non-Food Crops Centre 2016. [Last accessed Jan 2017]
  25. Patel M, Ou MS, Ingram LO, Shanmuga KT (2004) Fermentation of sugar cane bagasse hemicellulose hydrolysate to l(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnol Lett 26(11):865–868CrossRefPubMedGoogle Scholar
  26. Patel MA, Ou MS, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog 21:1453–1460CrossRefPubMedGoogle Scholar
  27. Ramírez N, Serrano JA, Sandoval H (2006) Microorganismos extremófilos. Actinomicetos halófilos en México. Revista Mexicana de Ciencias Farmaceúticas 37:56–71Google Scholar
  28. Rathi DN, Amir HG, Abed RM, Kosugi A, Arai T, Sulaiman O, Hashim R, Sudesh K (2013) Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 114(2):384–395CrossRefPubMedGoogle Scholar
  29. Sadhukhan J, Ng KS, Martinez-Hernandez E (2014) Biorefineries and chemical processes: design, integration and sustainability analysis. Wiley, ChichesterCrossRefGoogle Scholar
  30. Satchatippavarn S, Martinez-Hernandez E, Leung Pah Hang MY, Leach M, Yang A (2016) Urban biorefinery for waste processing. J Chem Eng Res Des 107:81–90CrossRefGoogle Scholar
  31. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San DiegoGoogle Scholar
  32. Thinkstep Gabi Software (2016) [Last accessed Jan 2017]
  33. Wan YK, Sadhukhan J, Ng DKS (2016) Techno-economic evaluations for feasibility of sago-based biorefinery, Part 2: Integrated bioethanol production and energy systems. Chem Eng Res Des 107:102–116CrossRefGoogle Scholar
  34. Xu M, Smith R, Sadhukhan J (2008) Optimization of productivity and thermodynamic performance of metabolic pathways. Ind Eng Chem Res 47(15):5669–5679CrossRefGoogle Scholar
  35. Ye L, Hudari MSB, Li Z, Wu JC (2014) Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem Eng J 83:16–21CrossRefGoogle Scholar
  36. Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15(5):611–618CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elias Martinez-Hernandez
    • 1
    Email author
  • Kok Siew Ng
    • 2
  • Myriam A. Amezcua Allieri
    • 1
  • Jorge A. Aburto Anell
    • 1
  • Jhuma Sadhukhan
    • 2
  1. 1.Biomass Conversion DivisionInstituto Mexicano del PetróleoMexico CityMexico
  2. 2.Centre for Environmental StrategyUniversity of SurreyGuildfordUK

Personalised recommendations