Advertisement

Integrated Consolidated Bioprocessing for Conversion of Lignocellulosic Feedstock to Biofuels and Value-Added Bioproducts

  • Jia Wang
  • Navanietha Krishnaraj Rathinam
  • David R. Salem
  • Rajesh K. Sani
Chapter

Abstract

This chapter will provide basic information about consolidated bioprocessing (CBP), including native and recombinant strategies and their application in biofuel production. It will address the integrated CBP process to produce biopolymers (e.g., polyhydroxyalkanoates, extracellular polysaccharides), organic compounds (e.g., 1,3-propanediol), and biogas (methane). The chapter will also discuss the production of biofuels by integrating the CBP process with fuel cells and other bioelectrochemical systems. A detailed discussion will be provided on the thermophilic anaerobic digestion (TAD) process to produce methane from agricultural biomass using thermophilic microorganisms as well as biological oxidation of methane to methanol using methanotrophic bacteria. The chapter will conclude with presenting different approaches in modeling CBP processes for existing applications.

Notes

Acknowledgements

Financial support provided by the National Science Foundation in the form of BuG ReMeDEE initiative (Award # 1736255) is gratefully acknowledged. The authors also gratefully acknowledge Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology for the support.

References

  1. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271CrossRefGoogle Scholar
  2. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78CrossRefPubMedGoogle Scholar
  3. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bajpai, P. (2016) Pretreatment of lignocellulosic biomass for biofuel production. Springer Briefs in Green Chemistry for Sustainability.  https://doi.org/10.1007/978-981-10-0687-6_2
  5. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888CrossRefPubMedGoogle Scholar
  6. Bella RD, Hirankumar G, Krishnaraj RN, Anand DP (2016) Novel proton conducting polymer electrolyte and its application in microbial fuel cell. Mater Lett 164:551–553CrossRefGoogle Scholar
  7. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759CrossRefPubMedGoogle Scholar
  8. Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK (2014a) Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresour Technol 165:314–318CrossRefPubMedGoogle Scholar
  9. Bhalla A, Bischoff KM, Sani RK (2014b) Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnol 14:963CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bhuvaneswari A, Krishnaraj NR, Berchmans S (2013) Metamorphosis of pathogen to electrigen at the electrode/electrolyte interface: direct electron transfer of Staphylococcus aureus leading to superior electrocatalytic activity. Electrochem Commun 34:25–28CrossRefGoogle Scholar
  11. Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116CrossRefPubMedGoogle Scholar
  12. Cao GL, Zhao L, Wang AJ, Wang ZY, Ren NQ (2014) Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol Biofuels 7:82CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457CrossRefPubMedGoogle Scholar
  14. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6:85CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446CrossRefPubMedGoogle Scholar
  16. Chen HQ, Gong Y, Fang Z (1996) The situation and aspect of application for macromolecule (I) – cellulose, lignin and starch. Yunnan Chem Technol 11:41–46Google Scholar
  17. Choi J, Anh Y (2015) Biohydrogen fermentation from sucrose and piggery waste with high levels of bicarbonate alkalinity. Energies 8:1716–1729CrossRefGoogle Scholar
  18. Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287CrossRefGoogle Scholar
  19. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969CrossRefPubMedGoogle Scholar
  20. Dietrich D, Illman B, Crooks C (2013) Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava. BMC Res 6:219CrossRefGoogle Scholar
  21. Dodda SR, Sarkar N, Aikat K, Krishnaraj RN, Bhattacharjee S, Bagchi A, Mukhopadhyay SS (2016) Insights from the molecular dynamics simulation of cellobiohydrolase Cel6A molecular structural model from Aspergillus fumigatus NITDGPKA3. Comb Chem High Throughput Screen 19:325–333CrossRefPubMedGoogle Scholar
  22. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRefPubMedGoogle Scholar
  23. Du C, Sabirova J, Soetaert W, Ki SCL (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25Google Scholar
  24. Edwards PP, Kuznetsov VL, David WI, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energ Policy 36:4356–4362CrossRefGoogle Scholar
  25. Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M, Modigell M (2009) Integration study on a two-stage fermentation process for the production of biohydrogen. In 12th Conference on process integration, modelling and optimisation for energy saving and pollution reduction, vol 18. AIDIC Servizul SRL, pp 345–350Google Scholar
  26. Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M (2011a) Effects of feedstocks on the process integration of biohydrogen production. Clean Technol Environ Policy 13:547–558CrossRefGoogle Scholar
  27. Foglia D, Wukovits W, Friedl A, de Vrije T, Claassen PA (2011b) Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances. Chem Eng Trans 25:815–820Google Scholar
  28. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398CrossRefGoogle Scholar
  29. Gebreeyessus GD, Jenicek P (2016) Thermophilic versus mesophilic anaerobic digestion of sewage sludge: a comparative review. Bioengineering 3:15CrossRefPubMedCentralGoogle Scholar
  30. Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319CrossRefPubMedGoogle Scholar
  31. Harish KRY, Srijana M, Madhusudhan RD, Gopal R (2010) Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol 9:1926–1934CrossRefGoogle Scholar
  32. Hay JXW, Wu TY, Juan JC (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 7:334–352CrossRefGoogle Scholar
  33. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77:2727–2733CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670CrossRefGoogle Scholar
  35. Jahnke LL, Summons RE, Dowling LM, Zahiralis KD (1995) Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis. Appl Environ Microbiol 61:576–582PubMedPubMedCentralGoogle Scholar
  36. Jain RM, Mody K, Mishra A, Jha B (2012) Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydr Polym 87:2320–2326CrossRefGoogle Scholar
  37. Karthikeyan R, Krishnaraj RN, Selvam A, Wong JWC, Lee PK, Leung MK, Berchmans S (2016) Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour Technol 217:113–120CrossRefPubMedGoogle Scholar
  38. Kataeva IA, Yang SJ, Dam P, Poole FL, Yin Y, Zhou F, Chou WC, Xu Y, Goodwin L, Sims DR, Detter JC (2009) Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J Bacteriol 191:3760–6731CrossRefPubMedPubMedCentralGoogle Scholar
  39. Khoshtinat M, Amin NAS, Noshadi I (2010) A review of methanol production from methane oxidation via non-thermal plasma reactor. World Acad Sci Eng Technol 62:354–358Google Scholar
  40. Krishnaraj RN, Pal P (2017) Enzyme-substrate interaction based approach for screening electroactive microorganisms for Microbial Fuel Cell applications. Indian J Chem Technol 24:93–96Google Scholar
  41. Krishnaraj RN, Yu JS (2014) Bioenergy: opportunities and challenges. Apple Academic Press, USA. ISBN-10: 1771881097Google Scholar
  42. Krishnaraj RN, Karthikeyan R, Berchmans S, Chandran S, Pal P (2013) Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells. Electrochim Acta 112:465–472CrossRefGoogle Scholar
  43. Krishnaraj RN, Chandran S, Pal P, Berchmans S (2014a) Molecular modeling and assessing the catalytic activity of glucose dehydrogenase of Gluconobacter suboxydans with a new approach for power generation in a microbial fuel cell. Curr Bioinforma 9:327–330CrossRefGoogle Scholar
  44. Krishnaraj RN, Berchmans S, Pal P (2014b) Symbiosis of photosynthetic microorganisms with non-photosynthetic ones for the conversion of cellulosic mass into electrical energy and pigments. Cellulose 21:2349–2355CrossRefGoogle Scholar
  45. Krishnaraj RN, Berchmans S, Pal P (2015) The three-compartment microbial fuel cell: a new sustainable approach to bioelectricity generation from lignocellulosic biomass. Cellulose 22:655–662CrossRefGoogle Scholar
  46. Krishnaraj RN, Samanta D, Kumar A, Sani R (2017) Bioprospecting of thermostable cellulolytic enzymes through modeling and virtual screening method. Can J Biotech 1:19–25CrossRefGoogle Scholar
  47. Küçükaşik F, Kazak H, Güney D, Finore I, Poli A, Yenigün O, Nicolaus B, Öner ET (2011) Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol 89:1729–1740CrossRefPubMedGoogle Scholar
  48. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides – a perception. J Basic Microbiol 47:103–117CrossRefPubMedGoogle Scholar
  49. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  50. Lama S, Seol E, Park S (2017) Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose. Bioresour Technol 245:1542–1550.  https://doi.org/10.1016/j.biortech.2017.05.052CrossRefPubMedGoogle Scholar
  51. Laser M, Jin H, Jayawardhana K, Lynd LR (2009) Coproduction of ethanol and power from switchgrass. Biofuels Bioprod Biorefin 3:195–218CrossRefGoogle Scholar
  52. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev 15:821–826CrossRefGoogle Scholar
  53. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefPubMedGoogle Scholar
  54. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefPubMedGoogle Scholar
  55. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583CrossRefPubMedGoogle Scholar
  56. Magnusson L, Islam R, Sparling R, Levin D, Cicek N (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrog Energy 33:5398–5403CrossRefGoogle Scholar
  57. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG (2008) Genome sequencing and analysis of the biomass degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560CrossRefPubMedGoogle Scholar
  58. Mazzoli R (2012) Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineer’s tricks. Comput Struct Biotechnol J 3:1–9CrossRefGoogle Scholar
  59. Moriello VS, Lama L, Poli A, Gugliandolo C, Maugeri TL, Gambacorta A, Nicolaus B (2003) Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in flegrean areas. J Ind Microbiol Biotechnol 30:95–101CrossRefGoogle Scholar
  60. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459CrossRefPubMedGoogle Scholar
  61. Nicolaus B, Lama L, Esposito E, Manca MC, Improta R, Bellitti MR, Duckworth AW, Grant WD, Gambacorta A (1999) Haloarcula spp able to biosynthesize exo- and endopolymers. J Ind Microbiol Biotechnol 23:489–496CrossRefGoogle Scholar
  62. Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158CrossRefPubMedGoogle Scholar
  63. Olson DG, McBride JE, Shaw AJ, Lynd LR (2011) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405CrossRefPubMedGoogle Scholar
  64. Öner ET (2013) Microbial production of extracellular polysaccharides from biomass. In: Pretreatment techniques for biofuels and biorefineries. Springer, Berlin, Heidelberg, pp 35–56CrossRefGoogle Scholar
  65. Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161:431–440CrossRefPubMedGoogle Scholar
  66. Park D, Lee J (2013) Biological conversion of methane to methanol. Korean J Chem Eng 30:977–987CrossRefGoogle Scholar
  67. Pham TH, Rabaey K, Aelterman P, Clauwaert P, de Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292CrossRefGoogle Scholar
  68. Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802CrossRefPubMedPubMedCentralGoogle Scholar
  69. Poli A, di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea.  https://doi.org/10.1155/2011/693253CrossRefGoogle Scholar
  70. Qin G, Zhu L, Chen X, Wang PG, Zhang Y (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology 153:1566–1572CrossRefPubMedGoogle Scholar
  71. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298CrossRefPubMedGoogle Scholar
  72. Rajeswari S, Vidhya S, Krishnaraj RN, Saravanan P, Sundarapandiyan S, Maruthamuthu S, Ponmariappan S, Vijayan M (2016) Utilization of soak liquor in microbial fuel cell. Fuel 181:148–156CrossRefGoogle Scholar
  73. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623CrossRefGoogle Scholar
  74. Rastogi G, Gurram RN, Bhalla A, Jaswal R, Gonzalez R, Bischoff KM, Hughes SR, Sudhir K, Sani RK (2013) Fermentation of glucose, xylose, and glycerol by bacteria isolated from the extreme biosphere of the former Homestake gold mine, South Dakota. J Front Microbiotechnol Ecotoxicol Bioremed 4:1–8Google Scholar
  75. Sani RK, Krishnaraj RN (2017) Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. ISBN 978-3-319-54684-1. Springer, USAGoogle Scholar
  76. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913CrossRefPubMedGoogle Scholar
  77. Schuster BG, Chinn MS (2013) Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. BioEnerg Res 6:416–435CrossRefGoogle Scholar
  78. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS 105:13769–13774CrossRefPubMedGoogle Scholar
  79. Shaw AJ, Covalla SF, Hogsett DA, Herring CD (2011) Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl Environ Microbiol 77:2534–2536CrossRefPubMedPubMedCentralGoogle Scholar
  80. Spanò A, Gugliandolo C, Lentini V, Maugeri TL, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67:21–29CrossRefPubMedGoogle Scholar
  81. Talluri S, Raj SM, Christopher LP (2013) Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour Technol 139:272–279CrossRefPubMedGoogle Scholar
  82. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599CrossRefPubMedPubMedCentralGoogle Scholar
  83. van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418CrossRefPubMedGoogle Scholar
  84. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463CrossRefPubMedGoogle Scholar
  85. Wang A, Sun D, Cao G, Wang H, Ren N, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143CrossRefPubMedGoogle Scholar
  86. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32CrossRefGoogle Scholar
  87. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbial Biotechnol 85:849–860CrossRefGoogle Scholar
  88. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104:4245–4269CrossRefGoogle Scholar
  89. Wu M, Wu Y, Wang M (2006) Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment. Biotechnol Prog 22:1012–1024CrossRefPubMedGoogle Scholar
  90. Wukovits W, Friedl A, Markowski M (2007) Identification of a suitable process scheme for the non-thermal production of biohydrogen. Chem Eng Trans 12:315–320Google Scholar
  91. Yasin NHM, Mumtaz T, Hassan MA (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manag 130:375–385CrossRefGoogle Scholar
  92. Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857CrossRefPubMedGoogle Scholar

Further Readings

  1. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282CrossRefGoogle Scholar
  2. Bibra M, Wang J, Squillace P, Pinkelman R, Papendick S, Schneiderman S, Wood V, Amar V, Kumar S, Salem D, Sani RK (2014) Biofuels and value-added products from extremophiles. Chapter in “Advances in Biotechnology”. I. K. International Publishing House, IndiaGoogle Scholar
  3. Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962CrossRefGoogle Scholar
  4. Kumar S, Bhalla A, Bibra M, Wang J, Morisette K, Raj SM, Salem D, Sani RK (2015) Thermophilic biohydrogen production: challenges at the industrial scale. Chapter in “Bioenergy: opportunities and challenges”. Apple Academic Press, USACrossRefGoogle Scholar
  5. Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV (2010) Extremophilic microorganisms: biochemical adaptation and biotechnological application (review). Appl Biochem Microbiol 46:1–14CrossRefGoogle Scholar
  6. Ni M, Leung DY, Leung MK, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472CrossRefGoogle Scholar
  7. Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valori 1:21–39CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jia Wang
    • 1
  • Navanietha Krishnaraj Rathinam
    • 1
    • 2
    • 3
  • David R. Salem
    • 3
    • 4
    • 5
  • Rajesh K. Sani
    • 1
    • 2
    • 3
    • 5
  1. 1.Department of Chemical and Biological EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA
  2. 2.BuG ReMeDEE Consortia, South Dakota School of Mines and TechnologyRapid CityUSA
  3. 3.Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio Center)Rapid CityUSA
  4. 4.Department of Materials and Metallurgical EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA
  5. 5.Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations