Advertisement

Polyhydroxyalkanoates Production from Renewable and Waste Materials Using Extremophiles/Recombinant Microbes

  • Özkan Danış
  • Ayşe Ogan
  • Meral Birbir
Chapter

Abstract

  • Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by various species of Bacteria and Archaea as reserves of energy and carbon in nutrient poor environments.

  • Being biodegradable and biocompatible, PHAs have found many industrial and medical applications as attractive bio-based alternatives to petroleum-based polymers.

  • To compete with petroleum-based polymers and garner a bigger market share, cost-effective PHA production processes are needed.

  • Therefore, renewable, cheap, sustainable, and readily available carbon sources from industrial wastes and agricultural by-products should be considered in PHA production.

Keywords

Polyhydroxyalkanoates Biopolymers Extremophiles Archaea Waste reutilization 

Notes

Acknowledgment

The authors are thankful to Dr. Martin Louis Duncan for skillfully proofreading our manuscript.

References

  1. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MA (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421CrossRefPubMedGoogle Scholar
  2. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  3. Anterrieu S, Quadri L, Geurkink B, Dinkla I, Bengtsson S, Arcos-Hernandez M, Alexandersson T, Morgan-Sagastume F, Karlsson A, Hjort M, Karabegovic L, Magnusson P, Johansson P, Christensson M, Werker A (2014) Integration of biopolymer production with process water treatment at a sugar factory. New Biotechnol 31:308–323CrossRefGoogle Scholar
  4. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220CrossRefPubMedGoogle Scholar
  5. Arcos-Hernández MV, Laycock B, Donose BC, Pratt S, Halley P, Al-Luaibi S, Werker A, Lant PA (2013) Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV). Eur Polym J 49:904–913CrossRefGoogle Scholar
  6. Arumugam A, Sandhya M, Ponnusami V (2014) Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresour Technol 164:170–176CrossRefPubMedGoogle Scholar
  7. Bhattacharyya A, Jana K, Haldar S, Bhowmic A, Mukhopadhyay UK, De S, Mukherjee J (2015) Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis. World J Microbiol Biotechnol 31:717–727CrossRefPubMedGoogle Scholar
  8. Bonartsev AP, Myshina VL, Nikolaeva DA, Furina EK, Makhina TA, Livshits VA, Boskhomdzhiev AP, Ivanov EA, Iordanskii AL, Bonartseva GA (2007) Biosynthesis, biodegradation, and application of poly(3-hydroxybutyrate) and its copolymers – natural polyesters produced by diazotrophic bacteria. In: Méndez-Villas A (ed) Communicating current research and educational topics and trends in applied microbiology. FORMATEX Microbiology Series, vol 1. FORMATEX, Badajoz, pp 295–307Google Scholar
  9. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161CrossRefPubMedGoogle Scholar
  10. Braunegg G, Koller M, Hesse PJ, Kutschera C, Bona R, Hermann C, Horvat P, Neto J, Dos Santos Pereira L (2007) Production of plastics from waste derived from agrofood industry. In: Graziani M, Fornasiero P (eds) Renewable resources and renewable energy: a global challenge. CRC Press, Boca Raton, pp 119–135Google Scholar
  11. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392CrossRefPubMedGoogle Scholar
  12. Cesário MT, Raposo RS, de Almeida MCMD, van Keulen F, Ferreira BS, Telo JP, da Fonseca MMR (2014) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. Int J Biol Macromol 71:59–67CrossRefPubMedGoogle Scholar
  13. Chee J, Yoga S, Lau N, Ling S, Abed RMM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. In: Méndez-Villas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. FORMATEX Microbiology Series, vol 2. FORMATEX, Badajoz, pp 1395–1404Google Scholar
  14. Chen G (2010) Introduction of bacterial plastics PHA, PLA, PBS, PE, PTT, and PPP. In: Chen G (ed) Plastics from bacteria. Microbiology monographs, vol 12. Springer, Heidelberg, pp 1–16CrossRefGoogle Scholar
  15. Ciesielski S, Mozejko J, Pisutpaisal N (2015) Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod 106:408–421CrossRefGoogle Scholar
  16. Cui B, Huang S, Xu F, Zhanq R, Zhanq Y (2015) Improved productivity of poly(3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Appl Microbiol Biotechnol 99:6009–6019CrossRefPubMedGoogle Scholar
  17. Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, Birbir M (2015) Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles 19:515–524CrossRefPubMedGoogle Scholar
  18. Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK, Tuohy MG, Padamatti RB, Casey E, O’Connor KE (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150:202–209CrossRefPubMedGoogle Scholar
  19. Di Donato P, Fiorentino G, Anzelmo G, Tommonaro G, Nicalous B, Poli A (2011) Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste Biomass Valor 2:103–111CrossRefGoogle Scholar
  20. Dimou C, Kopsahelis N, Papadaki A, Papanikolaoua S, Kookos IK, Mandalaa I, Koutinasa AA (2015) Wine lees valorisation: biorefinery development including production of a generic fermentation feedstock employed for poly(hydroxybutyrate) synthesis. Food Res Int 73:81–87CrossRefGoogle Scholar
  21. Dionisi D, Garucci G, Papini MP, Riccardi C, Majone M, Carrasco F (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res 39:2076–2084CrossRefPubMedGoogle Scholar
  22. Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Ed 17:1425–1438CrossRefPubMedGoogle Scholar
  23. Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25Google Scholar
  24. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly(β-hydroxybutyrate) by Halobacteria. Appl Environ Microbiol 51:214–216PubMedPubMedCentralGoogle Scholar
  25. Gomaa EZ (2014) Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz Arch Biol Technol 57:145–154CrossRefGoogle Scholar
  26. Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065CrossRefPubMedPubMedCentralGoogle Scholar
  27. Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H (2010) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) Co- and terpolyesters from biodiesel industry-derived by-products. Archaea 2013:1–10CrossRefGoogle Scholar
  29. Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BH (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280PubMedGoogle Scholar
  30. Hezayen FF, Gutierrez MC, Steinbüchel A, Tindall BJ, Rehm BH (2010) Halopiger aswanensis sp. nov., a polymer producing and extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Microbiol 60:633–637CrossRefPubMedGoogle Scholar
  31. Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706CrossRefPubMedGoogle Scholar
  32. Insomphun C, Mifune J, Orita I, Numata K, Nakamura S, Fukui T (2014) Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. J Biosci Bioeng 117:184–190CrossRefPubMedGoogle Scholar
  33. Kachrimanidou V, Kopsahelis N, Papanikolaou S, Kookos IK, De Bruyn M, Clark JH, Koutinas AA (2014) Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol 172:121–130CrossRefPubMedGoogle Scholar
  34. Kirk RG, Ginzburg M (1972) Ultrastructure of two species of Halobacterium. J Ultrastruct Res 41:80–94CrossRefPubMedGoogle Scholar
  35. Koller M (2015) Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015:1–8CrossRefGoogle Scholar
  36. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565CrossRefPubMedGoogle Scholar
  37. Koller M, Hesse PJ, Bona R, Kutschera C, Atlic A, Braunegg G (2007) Biosynthesis of high quality polyhydroxyalkanoate co- and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol Symp 253:33–39CrossRefGoogle Scholar
  38. Koller M, Atlić A, Dias M, Reiterer R, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen G (ed) Plastics from bacteria. Microbiology monographs, vol 12. Springer, Heidelberg, pp 85–119CrossRefGoogle Scholar
  39. Legat A, Gruber C, Zanggeri K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lillo JC, Rodriguez-Valera F (1990) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521PubMedPubMedCentralGoogle Scholar
  41. Linares-Pastén JA, Sabet-Azad R, Pessina L, Sardari RR, Ibrahim MH, Hatti-Kaul R (2015) Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes. Bioresour Technol 180:172–176CrossRefPubMedGoogle Scholar
  42. Lu J, Tappel RC, Nomura CT (2009) Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248CrossRefGoogle Scholar
  43. Martinez GA, Bertin L, Scoma A, Fava F (2015) Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator. Biochem Eng J 97:92–100CrossRefGoogle Scholar
  44. Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MA (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123CrossRefPubMedGoogle Scholar
  45. Moita R, Freches A, Lemos PC (2014) Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 58:9–20CrossRefPubMedGoogle Scholar
  46. Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, Campos JL, Palmeiro-Sánchez T, van Loosdrecht MC (2014) Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture. Water Res 66:190–198CrossRefPubMedGoogle Scholar
  47. Mozejko J, Ciesielski S (2013) Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. J Biosci Bioeng 116:485–492CrossRefPubMedGoogle Scholar
  48. Mozumder MSI, Garcia-Gonzales L, De Wever H, Volcke EI (2015) Poly(3-hydroxybutyrate) (PHB) production from CO2: model development and process optimization. Biochem Eng J 98:107–116CrossRefGoogle Scholar
  49. Nicolaus B, Lama L, Esposito E, Manca MC, Improta R, Bellitti MR, Duckworth AW, Grant WD, Gambacorta A (1999) Haloarcula spp able to biosynthesize exo- and endopolymers. J Ind Microbiol Biotechnol 23:489–496CrossRefGoogle Scholar
  50. Nikodinovic-Runic J, Guzik M, Kenny ST, Babu R, Werker A, O’Conner KE (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 84. Elsevier Academic Press, San Diego, pp 139–200Google Scholar
  51. O’Connor S, Szwej E, Nikodinovic-Runic J, O'Connor A, Byrne AT, Devocelle M, O’Donovan N, Gallagher WM, Babu R, Kenny ST, Zinn M, Zulian QR, O'Connor KE (2013) The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 34:2710–2718CrossRefPubMedGoogle Scholar
  52. Oh YH, Lee SH, Jang YA, Choi JW, Hong KS, Yu JH, Shin J, Song BK, Mastan SG, David Y, Baylon MG, Lee SY, Park SJ (2015) Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 181:283–290CrossRefPubMedGoogle Scholar
  53. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  54. Pittman T, Steinmetz H (2014) Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant. Bioresour Technol 167:297–302CrossRefGoogle Scholar
  55. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 2011:1–13CrossRefGoogle Scholar
  56. Posada JA, Higuita JC, Cardona CA (2011) Optimization on the use of crude glycerol from the biodiesel production to obtain poly-3-hydroxybutyrate. In: Proceedings of world renewable energy congress, Sweden. Linköping electronic conference proceedings, 57, pp 327–334Google Scholar
  57. Pramanik A, Mitra A, Arumugam M, Bhattacharyya A, Sadhukhan S, Ray A, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for the production of polyhydroxybutyrate by Haloarcula marismortui. Folia Microbiol 57:71–79CrossRefGoogle Scholar
  58. Queirós D, Rosetti S, Serafim LS (2014) PHA production by mixed cultures: a way to valorize wastes from pulp industry. Bioresour Technol 157:197–205CrossRefPubMedGoogle Scholar
  59. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696CrossRefPubMedGoogle Scholar
  60. Ribera RG, Monteoliva-Sanchez M, Ramos-Cormenzana A (2001) Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harboring pSK2665 in wastewater from olive oil mills (alpechín). Electron J Biotechnol 4:116–119Google Scholar
  61. Rodríguez-Contreras A, Koller M, Dias MMS, Calafell-Monforte M, Braunegg G, Marqués-Calvo MS (2015) Influence of glycerol on poly(3-hydroxybutyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem Eng J 94:50–57CrossRefGoogle Scholar
  62. Salgaonkar BB, Mani K, Braganca JM (2013) Accumulation of polyhydroxyalkanoates by halophilic archaea isolated from traditional solar salterns of India. Extremophiles 17:787–795CrossRefPubMedGoogle Scholar
  63. Shirastav A, Kim HY, Kim YR (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013:1–12CrossRefGoogle Scholar
  64. Silva LF, Taciro MK, Michelin Ramos ME, Carter JM, Pradella JG, Gomez JG (2004) Poly-3-hydroxybutyrate (PHB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31:245–254CrossRefPubMedGoogle Scholar
  65. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  66. Tan GYA, Chen CL, Li L, Ge L, Wang L, Razad IMN, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754CrossRefGoogle Scholar
  67. Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl Biochem Biotechnol 175:3120–3132CrossRefPubMedGoogle Scholar
  68. Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94CrossRefPubMedGoogle Scholar
  69. Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190CrossRefPubMedGoogle Scholar
  70. Wong HH, Lee SY (1998) Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50:30–33CrossRefPubMedGoogle Scholar
  71. Wu Q, Huang H, Hu G, Chen J, Ho KP, Chen GQ (2001) Production of poly-3-hydroxybutrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek 80:111–118CrossRefPubMedGoogle Scholar
  72. Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616CrossRefPubMedGoogle Scholar
  73. Xu XW, Ren PG, Liu SJ, Wu M, Zhou J (2005) Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. Int J Syst Evol Microbiol 55:1311–1314CrossRefPubMedGoogle Scholar
  74. Yang Q, Wang J, Zhang S, Tang X, Shang G, Peng Q, Wang R, Cai X (2014) The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and its applications in tissue engineering. Curr Stem Cell Res Ther 9:215–222CrossRefPubMedGoogle Scholar
  75. Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1432–1442Google Scholar
  76. Zhang M, Wu H, Chen H (2014) Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge. Process Saf Environ Prot 92:171–178CrossRefGoogle Scholar

Further Reading

  1. Koller M (ed) (2016) Recent advances in biotechnology, Vol 1, Microbial biopolyester production, performance and processing microbiology, feedstocks, and metabolism. Bentham ScienceGoogle Scholar
  2. Koller M (ed) (2016) Recent advances in biotechnology, Vol 2, Microbial polyester production, performance and processing bioengineering, characterization, and sustainability. Bentham ScienceGoogle Scholar
  3. Kalia VC (2015) Microbial factories, Vol 2, Biodiversity, biopolymers, bioactive molecules. SpringerGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Arts and SciencesMarmara UniversityIstanbulTurkey

Personalised recommendations