Advertisement

Exopolysaccharide Productions from Extremophiles: The Chemical Structures and Their Bioactivities

  • Paola Di Donato
  • Annarita Poli
  • Giuseppina Tommonaro
  • Gennaro Roberto Abbamondi
  • Barbara Nicolaus
Chapter

Abstract

This chapter will discuss some remarkable examples of extremophilic bacteria, isolated from different ecosystems, which produce exopolysaccharides (EPSs). The chapter will also cover the properties of EPSs produced by extremophiles and their possible commercial applications ranging from pharmaceutical to food processing, detoxification and bioremediation. This chapter will also cover the techniques that are used to purify, analyse and structurally characterise the bacterial EPSs; the state of the art in the field of bacterial EPSs research, with mention to the main examples of well-studied and commercially exploited EPSs; an overview of the main EPSs’ producing extremophiles that have been isolated from both aquatic and terrestrial environments; the description of the main biosynthetic routes leading to the EPSs production in archaeal and bacterial extremophiles, with reference to the enzymes involved and to the genetic manipulations for biosynthesis’s tailoring; the analysis of the most interesting biological properties of extremophiles’ EPSs (that can act as anti-inflammatory, immunomodulating and antiviral agents) and of their biotechnological applications in drug delivery systems; and the compendium of the most used techniques to perform the purification, the analysis of chemical composition, the identification of glycoside linkage position and substitution pattern, the determination of the molecular-weight distribution and the structural analysis of EPSs.

Keywords

Exopolysaccharides Extremophiles Bioactive EPSs Structural characterisation 

Notes

Acknowledgements

This work was partially supported by the project PON03PE_00107_1 BioPoliS ‘Sviluppo di tecnologie verdi per la produzione di BIOchemicals per la sintesi e l’applicazione industriale di materiali POLImerici a partire da biomasse agricole ottenute da sistemi colturali Sostenibili nella Regione Campania’.

References

  1. Arco Y, Llamas I, Martınez-Checa F, Argandona M, Quesada E, del Moral A (2005) epsABCJ genes are involved in the biosynthesis of the exopolysaccharide mauran produced by Halomonas maura. Microbiology 151(9):2841–2851CrossRefPubMedGoogle Scholar
  2. Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G (2006) Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int Immunopharmacol 6(1):8–13CrossRefPubMedGoogle Scholar
  3. Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137CrossRefPubMedGoogle Scholar
  4. Ateş Ö, Toksoy Öner E, Arga KY (2011) Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC Syst Biol 5:12CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ateş Ö, Arga KY, Toksoy Öner E (2013) The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6(T). Biotechnol Prog 29:1386–1397CrossRefPubMedGoogle Scholar
  6. Duus JO, Gotfredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100:4589–4614CrossRefPubMedGoogle Scholar
  7. Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024.  https://doi.org/10.3390/md12053005 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Freitas F, Alves VD, Reis M (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398.  https://doi.org/10.1016/j.tibtech.2011.03.008 CrossRefPubMedGoogle Scholar
  9. Gómez-Ordonez E, Jiménez-Escrig A, Rupérez P (2012) Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC). Talanta 93:153–159CrossRefPubMedGoogle Scholar
  10. Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr Polym 77(2):338–343CrossRefGoogle Scholar
  11. Lin MH, Yang YL, Chen YP, Hua KF, Lu CP, Sheu F, Lin GH, Tsay SS, Liang SM, Wu SH (2011) A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through Toll-like receptor 2. J Biol Chem 286(20):17736–17745.  https://doi.org/10.1074/jbc.M110.200113 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Llamas L, Mata JA, Tallon R, Bressollier P, Urdaci MC, Quesada E, Bejar V (2010) Characterization of the exopolysaccharide produced by Salipiger mucosus A3T, a halophilic species belonging to the Alphaproteobacteria, isolated on the Spanish Mediterranean seaboard. Mar Drugs 8(8):2240–2251CrossRefPubMedPubMedCentralGoogle Scholar
  13. Mancuso Nichols CA, Garon S, Bowman JP, Raguénès G, Guézennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96:1057–1066.  https://doi.org/10.1111/j.1365-2672.2004.02216.x CrossRefPubMedGoogle Scholar
  14. Mastascusa V, Romano I, Di Donato P, Poli A, Della Corte V, Rotundi A, Bussoletti E, Quarto M, Pugliese M, Nicolaus B (2014) Extremophiles survival to simulated space conditions: an astrobiology model study. Orig Life Evol Biosph 44(3):231–237CrossRefPubMedGoogle Scholar
  15. Mishra A, Jha B (2013) Microbial exopolysaccharides. In: Rosenberg E et al (eds) The prokaryotes – applied bacteriology and biotechnology. Springer, Berlin, pp 179–192.  https://doi.org/10.1007/978-3-642-31331-8_25 CrossRefGoogle Scholar
  16. Nicolaus B, Kambourova M, Toksoy Oner E (2010) Exopolysaccharides from extremophiles: From fundamentals to biotechnology. Environ Technol “Special Issue Extremophiles” 31(10):1145–1158CrossRefGoogle Scholar
  17. Poli A, Kazak H, Gurleyendag B, Tommonaro G, Pieretti G, Toksoy Oner E, Nicolaus B (2009) High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym 78(4):651–657CrossRefGoogle Scholar
  18. Poli A, Anzelmo A, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8(6):1779–1802CrossRefPubMedPubMedCentralGoogle Scholar
  19. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011:693253.  https://doi.org/10.1155/2011/693253 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Qin QL, Zhang XY, Wang XM, Liu GM, Chen XL, Xi BB, Dang HY, Zhou BC, Yu J, Zhang YZ (2010) The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. Genomics 11:247.  https://doi.org/10.1186/1471-2164-11-247 CrossRefPubMedGoogle Scholar
  21. Sezer AD, Kazak H, Toksoy E, Akbuga J (2011) Levan-based nanocarrier system for peptide and protein drug delivery: optimization and influence of experimental parameters on the nanoparticle characteristics. Carbohydr Polym 84(1):358–363CrossRefGoogle Scholar
  22. Spanò A, Gugliandolo C, Lentini V, Maugeri TL, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67:21–29.  https://doi.org/10.1007/s00284-013-0327-4 CrossRefPubMedGoogle Scholar
  23. Stingele F, Neeser JR, Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680–1690CrossRefPubMedPubMedCentralGoogle Scholar
  24. Yasar Yildiz S, Anzelmo A, Ozer T, Radchenkova N, Genc S, Di Donato P, Nicolaus B, Toksoy Oner E, Kambourova M (2014) Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production. J Appl Microbiol 116:314–324.  https://doi.org/10.1111/jam.12362 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paola Di Donato
    • 1
    • 2
  • Annarita Poli
    • 1
  • Giuseppina Tommonaro
    • 1
  • Gennaro Roberto Abbamondi
    • 1
  • Barbara Nicolaus
    • 1
  1. 1.Institute of Biomolecular ChemistryCNR-National Research Council of ItalyPozzuoli, NapoliItaly
  2. 2.Department of Science and Technology, Centro Direzionale Isola C4University of Naples “Parthenope”NapoliItaly

Personalised recommendations