Advertisement

Bioprospecting of Extremophiles for Biotechnology Applications

  • Navanietha Krishnaraj Rathinam
  • Rajesh K. Sani
Chapter

Abstract

This chapter aims to acquaint the readers with basic concepts about extremophiles, extremophilic bioprocesses, and their advantages over other chemical and biological systems. The chapter introduces the concept of extremophiles and extremophilic bioprocesses for wide range of biotechnological applications. Finally, the chapter addresses the applications of extremophiles in different sectors such as bioenergy, bioelectrochemical systems, bioremediation, and production of value-added products.

Keywords

Extremozymes Microbial processes Metabolic pathways Extreme environments 

Notes

Acknowledgements

Financial support provided by the National Science Foundation in the form of BuG ReMeDEE initiative (Award # 1736255) is gratefully acknowledged. The authors also gratefully acknowledge Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology for the support.

References

  1. Abu Al-Soud W, Rådström P (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 64(10):3748–3753PubMedPubMedCentralGoogle Scholar
  2. Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production, a review. Braz J Microbiol 43(3):844–856PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1):117–139.  https://doi.org/10.3390/biom4010117CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alberts B, Johnson A, Lewis JB (2002) Catalysis and the use of energy by cells. In: Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  5. Amaretti A, Raimondi S, Sala M et al (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Factor 9:73Google Scholar
  6. Amarouche-Yala S, Benouadah A, El Ouahab Bentabet A, López-García P (2014) Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs. Extremophiles 18(6):1035–1047PubMedCrossRefGoogle Scholar
  7. Anderson IJ, DasSarma P, Lucas S et al (2016) Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Stand Genomic Sci 11(1):70PubMedPubMedCentralCrossRefGoogle Scholar
  8. Andrea A, Stierle Donald B, Stierle TG, Mou TC, Antczak C, Djaballah H (2015) Azaphilones from an acid mine extremophile strain of a Pleurostomophora sp. J Nat Prod 78(12):2917–2923CrossRefGoogle Scholar
  9. Bell TAS, Prithiviraj B, Wahlen BD, Fields MW, Peyton BM (2015) A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities. Front Microbiol 6:1480.  https://doi.org/10.3389/fmicb.2015.01480CrossRefPubMedGoogle Scholar
  10. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759CrossRefPubMedGoogle Scholar
  11. Bishop JL, Schelble RT, McKay CP, Brown AJ, Perry KA (2011) Carbonate rocks in the Mojave Desert as an analogue for Martian carbonates. Int J Astrobiol 10(04):3CrossRefGoogle Scholar
  12. Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38(3):393–448PubMedCrossRefGoogle Scholar
  13. Cha S, Srinivasan S, Seo T, Kim MK (2014) Deinococcus radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Antonie Van Leeuwenhoek 105(1):229–235PubMedCrossRefGoogle Scholar
  14. Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100(4):1648–1658PubMedCrossRefGoogle Scholar
  15. Chen KS, Lin YS, Yang SS (2007) Application of thermotolerant microorganisms for biofertilizer preparation. J Microbiol Immunol Infect 40(6):462–473PubMedGoogle Scholar
  16. Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014) Progressive degradation of crude oil n-Alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS ONE 9(11):e113253.  https://doi.org/10.1371/journal.pone.0113253CrossRefPubMedPubMedCentralGoogle Scholar
  17. Coker JA (2016) Extremophiles and biotechnology: current uses and prospects. F1000Research 5, F1000 Faculty Rev-396. doi:  https://doi.org/10.12688/f1000research.7432.1CrossRefGoogle Scholar
  18. Cooper GM (2000) The cell: a molecular approach. In: The central role of enzymes as biological catalysts, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  19. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392(6674):353–358PubMedCrossRefGoogle Scholar
  20. Dhiman SS, David A, Shrestha N, Johnson GR, Benjamin KM, Gadhamshetty V, Sani RK (2017) Conversion of raw and untreated disposal into ethanol. Bioresour Tech 244(Pt 1):733CrossRefGoogle Scholar
  21. Dopson M, Ni G, Sleutels TH (2016) Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 40(2):164–181PubMedCrossRefGoogle Scholar
  22. Fardeau ML, Magot M, Patel BK, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50(6):2141–2149PubMedCrossRefGoogle Scholar
  23. Feller G, Sonnet P, Gerday C (1995) The beta-lactamase secreted by the antarctic psychrophile Psychrobacter immobilis A8. Appl Environ Microbiol 61(12):4474–4476PubMedPubMedCentralGoogle Scholar
  24. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072PubMedCrossRefGoogle Scholar
  25. Fuciños P, González R, Atanes E, Sestelo AB, Pérez-Guerra N, Pastrana L, Rúa ML (2012) Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol Biol 861:239–266PubMedCrossRefGoogle Scholar
  26. Gelzo M, Lamberti A, Spano G, Dello Russo A, Corso G, Masullo M (2014) Sterol and steroid catabolites from cholesterol produced by the psychrophile Pseudoalteromonas haloplanktis. J Mass Spectrom 49(9):947–951PubMedCrossRefGoogle Scholar
  27. Golden JS, Handfield RB, Daystar J, McConnell TE (2015) An economic impact analysis of the U.S. biobased products industry. A report to the congress of the United States of America, a joint publication of the Duke Center for Sustainability & Commerce and the Supply Chain Resource Cooperative at North Carolina State UniversityGoogle Scholar
  28. Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7(9):1277–1288PubMedCrossRefGoogle Scholar
  29. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenita A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278CrossRefGoogle Scholar
  30. Hamilton TL, Lange RK, Boyd ES, Peters JW (2011) Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming. Environ Microbiol 13(8):2204–2215PubMedCrossRefGoogle Scholar
  31. Hao C, Wei P, Pei L, Du Z, Zhang Y, Lu Y, Dong H (2017) Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Environ Pollut 223:507–516PubMedCrossRefGoogle Scholar
  32. Hawkins AS, Han Y, Lian H, Loder AJ, Menon AL, Iwuchukwu IJ et al (2011) Extremely thermophilic routes to microbial electrofuels. ACS Catal 1(9):1043–1050CrossRefGoogle Scholar
  33. Hussain A, Qazi JI (2016) Metals-induced functional stress in sulphate-reducing thermophiles: 3. Biotech 6(1):17Google Scholar
  34. Ji SQ, Wang B, Lu M, Li FL (2016) Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol Biofuels 9:81PubMedPubMedCentralCrossRefGoogle Scholar
  35. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59(Pt 5):1082–1089PubMedCrossRefGoogle Scholar
  36. Jong BC, Kim BH, Chang IS, Liew PW, Choo YF, Kang GS (2006) Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40(20):6449–6454PubMedCrossRefGoogle Scholar
  37. Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo ice shelf, Antarctica. Environ Microbiol 7(4):519–529PubMedCrossRefGoogle Scholar
  38. Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4.  https://doi.org/10.1186/2046-9063-8-4CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kato C, Bartlett DH (1997) The molecular biology of barophilic bacteria. Extremophiles 1(3):111–116PubMedCrossRefGoogle Scholar
  40. Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267CrossRefGoogle Scholar
  41. Klenk H, Clayton R, Tomb J, White O, Nelson K, Ketchum K, Dodson R, Gwinn M, Hickey E, Peterson J et al (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370PubMedCrossRefGoogle Scholar
  42. Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012:789652PubMedPubMedCentralCrossRefGoogle Scholar
  43. Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5(7):a012765PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kulshreshtha NM, Kumar A, Bisht G, Pasha S, Kumar R (2012) Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater. Sci World J 2012:345101.  https://doi.org/10.1100/2012/345101CrossRefGoogle Scholar
  45. Kumar S, Bhalla A, Bibra M, Sani RK (2015) Thermophilic biohydrogen production: challenges at the industrial scale. In: Krishnaraj RN (ed) Bioenergy: opportunities and challenges. Apple Academy Press, USA, pp 3–35CrossRefGoogle Scholar
  46. Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16(10):929–933PubMedCrossRefGoogle Scholar
  47. Lau NS, Sam KK, Amirul AA (2017) Genome features of moderately halophilic polyhydroxyalkanoate-producing Yangia sp. CCB-MM3. Stand Genomic Sci 12:12PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, Suhartono MT, Pyun Y (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179(2):393–400PubMedCrossRefGoogle Scholar
  49. López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15(5):445–455PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lu L, Ren N, Zhao X, Wang H, Wu D, Xing D (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 4:1329–1336CrossRefGoogle Scholar
  51. Lusk BG, Colin A, Parameswaran P, Rittmann BE, Torres CI (2007) Simultaneous fermentation of cellulose and current production with an enriched mixed culture of thermophilic bacteria in a microbial electrolysis cell. Microb Biotechnol 11:63–73.  https://doi.org/10.1111/1751-7915.12733CrossRefGoogle Scholar
  52. Lusk BG, Khan QF, Parameswaran P, Hameed A, Ali N, Rittmann BE, Torres CI (2015) Characterization of electrical current-generation capabilities from thermophilic bacterium Thermoanaerobacter pseudethanolicus using xylose, glucose, cellobiose, or acetate with fixed anode potentials. Environ Sci Technol 49(24):14725–14731PubMedCrossRefGoogle Scholar
  53. Makled SO, Hamdan AM, El-Sayed AM, Hafez EE (2017) Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish Shellfish Immunol 61:194–200PubMedCrossRefGoogle Scholar
  54. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663PubMedCrossRefGoogle Scholar
  55. Mathis BJ, Marshall CW, Milliken CE, Makkar RS, Creager SE, May HD (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78(1):147–155PubMedCrossRefGoogle Scholar
  56. Matsumoto K, Mukai Y, Ogata D, Shozui F, Nduko JM, Taguchi S, Ooi T (2010) Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl Microbiol Biotechnol 86(5):1431–1438PubMedCrossRefGoogle Scholar
  57. Maurya AK, Parashar D, Satyanarayana T (2017) Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics. Int J Biol Macromol 94(Pt A) 94:36–44CrossRefGoogle Scholar
  58. McDuff S, King GM, Neupane S, Myers MR (2016) Isolation and characterization of extremely halophilic CO-oxidizing euryarchaeota from hypersaline cinders, sediments and soils and description of a novel CO oxidizer, Haloferax namakaokahaiae Mke2.3T, sp. nov. FEMS Microbiol Ecol 92(4):fiw028PubMedCrossRefGoogle Scholar
  59. Mei N, Zergane N, Postec A, Erauso G, Ollier A, Payri C, Pelletier B, Fardeau M-L, Ollivier B, Quéméneur M (2014) Fermentative hydrogen production by a new alkaliphilic Clostridium sp. (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia. Int J Hydrog Energy 39(34):19465–19473CrossRefGoogle Scholar
  60. Mesbah NM, Wiegel J (2008) Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann N Y Acad Sci 1125:44–57PubMedCrossRefGoogle Scholar
  61. Mezhoud N, Zili F, Bouzidi N, Helaoui F, Ammar J, Ouada HB (2014) The effects of temperature and light intensity on growth, reproduction and EPS synthesis of a thermophilic strain related to the genus Graesiella. Bioprocess Biosyst Eng 37(11):2271–2280.  https://doi.org/10.1007/s00449-014-1204-7. Epub 2014 May 13CrossRefPubMedGoogle Scholar
  62. Mohamed ZA (2008) Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon 51:17–27PubMedCrossRefGoogle Scholar
  63. Morgan R, Xiao J, Xu S (1998) Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli. Appl Environ Microbiol 64(10):3669–3673PubMedPubMedCentralGoogle Scholar
  64. Müller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T (2015) Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 99(2):535–551PubMedCrossRefGoogle Scholar
  65. Nadeau T-L, Castenholz RW (2000) Characterization of psychrophilic oscillatorians (cyanobacteria) from Antarctic meltwater ponds. J Phycol 36(5):914–923.  https://doi.org/10.1046/j.1529-8817.2000.99201.xCrossRefGoogle Scholar
  66. Nakamuraa Y, Sawadaa T, Moritab Y, Tamiya E (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12(1):79–86CrossRefGoogle Scholar
  67. Nakayama A, Yano Y, Yoshida K (1994) New method for isolating barophiles from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Appl Environ Microbiol 60(11):4210–4212PubMedPubMedCentralGoogle Scholar
  68. Nan M, Nesrine Z, Anne P, Gael E, Angélique O, Claude P, Bernard P, Marie-Laure F, Bernard MQ (2014) Fermentative hydrogen production by a new alkaliphilic Clostridium sp. (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia. Int J Hydrog Energy 39(34):19465–19473CrossRefGoogle Scholar
  69. Nancucheo I, Johnson DB (2010) Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl Environ Microbiol 76(2):461–467PubMedCrossRefGoogle Scholar
  70. Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999 Jun) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6):711–729PubMedCrossRefGoogle Scholar
  71. Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G (2002) Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68(4):2081–2084PubMedPubMedCentralCrossRefGoogle Scholar
  72. Olsson S, Penacho V, Puente-Sánchez F, Díaz S, Gonzalez-Pastor DE, Aguilera A (2017) Horizontal gene transfer of phytochelatin synthases from bacteria to extremophilic green algae. Microb Ecol 73:50PubMedCrossRefGoogle Scholar
  73. Ou MS, Mohammed N, Ingram LO, Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155(1–3):379–385PubMedGoogle Scholar
  74. Paavilainen S, Helistö P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78(3):217–222CrossRefGoogle Scholar
  75. Pan LJ, Tang XD, Li CX, Yu GW, Wang Y (2017) Biodegradation of sulfamethazine by an isolated thermophile-Geobacillus sp. S-07. World J Microbiol Biotechnol 33(5):85PubMedCrossRefGoogle Scholar
  76. Paulino-Lima IG, Fujishima K, Navarrete JU, Galante D, Rodrigues F, Azua-Bustos A, Rothschild LJ (2016) Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations. J Photochem Photobiol B 163:327–336PubMedCrossRefGoogle Scholar
  77. Paulo PL, Vallero MV, Treviño RH, Lettinga G, Lens PN (2004) Thermophilic (55 degrees C) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition. J Biotechnol 11(1):79–88CrossRefGoogle Scholar
  78. Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of Eicosapentaenoic acid (EPA). PLoS One 6(8):e23325PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pham VH, Kim J, Jeong SW (2014) Enhanced isolation and culture of highly efficient psychrophilic oil-degrading bacteria from oil-contaminated soils in South Korea. J Environ Biol 35(6):1145–1149PubMedGoogle Scholar
  80. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33(3):183–209PubMedCrossRefGoogle Scholar
  81. Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17(3):250–255PubMedCrossRefGoogle Scholar
  82. Ramle Z, Rahim RA (2016) Psychrophilic lipase from Arctic bacterium. Trop Life Sci Res 27(supp1):151–157.  https://doi.org/10.21315/tlsr2016.27.3.21CrossRefPubMedPubMedCentralGoogle Scholar
  83. Rampelotto PH et al (2013) Extremophiles and extreme environments. Life 3(3):482–485.  https://doi.org/10.3390/life3030482CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rathinam NK, Samanta D, Kumar A, Sani R (2017) Bioprospecting of the thermostable cellulolytic enzyme through modeling and virtual screening method. Can J Biotech 1(1):19–25CrossRefGoogle Scholar
  85. Razak CNA, Salleh AB, Musani R, Samad MY, Basri M (1997) Some characteristics of lipases from thermophilic fungi isolated from palm oil mill effluent. J Mol Catal B Enzym 3(1–4):153–159CrossRefGoogle Scholar
  86. Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lütz C (2012) Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 79(3):638–648PubMedCrossRefGoogle Scholar
  87. Richter K, George R, Kagan J, Richmond J (2015) Autonomous, retrievable, deep sea microbial fuel cell. In: Conference of the OCEANS 2015, Genova. doi:  https://doi.org/10.1109/OCEANS-Genova.2015.7271635
  88. Royter M, Schmidt M, Elend C et al (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. Tengcongensis. Extremophiles 13(5):769–783PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, Oh TK, Lee JK (2006) New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol 70(3):321–326PubMedCrossRefGoogle Scholar
  90. Sahli R, Rivière C, Neut C, Bero J, Sahuc ME, Smaoui A, Beaufay C, Roumy V, Hennebelle T, Rouillé Y et al (2017) An ecological approach to discover new bioactive extracts and products: the case of extremophile plants. J Pharm Pharmacol 69:1041PubMedCrossRefGoogle Scholar
  91. Sani RK, Rathinam NK (2017) In: Sani R, Krishnaraj RN (eds) Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Springer, Cham. ISBN 978-3-319-54684-1CrossRefGoogle Scholar
  92. Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, Del Monaco G, Morana A (2016) Isolation and characterization of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int J Biol Macromol 92:174–184PubMedCrossRefGoogle Scholar
  93. Sar P, Kazy SK, Paul D, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, DordrechtGoogle Scholar
  94. Saranya P, Kumari HS, Jothieswari M, Rao BP, Sekaran G (2014) Novel extremely acidic lipases produced from bacillus species using oil substrates. J Ind Microbiol Biotechnol 41:9–15PubMedCrossRefGoogle Scholar
  95. Sardari RR, Kulcinskaja E, Ron EY, Björnsdóttir S, Friðjónsson ÓH, Hreggviðsson GÓ, Karlsson EN (2017) Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus. Carbohydr Polym 156:1–8PubMedCrossRefGoogle Scholar
  96. Sarilmiser HK, Ates O, Ozdemir G, Arga KY, Oner ET (2015) Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J Biosci Bioeng 119(4):455–463PubMedCrossRefGoogle Scholar
  97. Sheu DS, Chen WM, Lai YW, Chang RC (2012) Mutations derived from the thermophilic polyhydroxyalkanoate synthase PhaC enhance the thermostability and activity of PhaC from Cupriavidus necator H16. J Bacteriol 194(10):2620–2629PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sinha SK, Datta S (2016) β-glucosidase from the hyperthermophilic archaeon Thermococcus sp. is a salt-tolerant enzyme that is stabilized by its reaction product glucose. Appl Microbiol Biotechnol 100(19):8399–8409PubMedCrossRefGoogle Scholar
  99. Sokolovskaya OM, Magyar JS, Buzzeo MC (2015) Electrochemical behavior of cytochrome c552 from a psychrophilic microorganism. J Phys Chem C 118(33):18829–18835CrossRefGoogle Scholar
  100. Sorokin DY, Chernyh NA (2016) ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles 20(6):895–901PubMedCrossRefGoogle Scholar
  101. Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G (2012) Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. Int J Syst Evol Microbiol 62(Pt 9):2107–2113PubMedCrossRefGoogle Scholar
  102. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18(5):791–809PubMedPubMedCentralCrossRefGoogle Scholar
  103. Spijkerman E, Stojkovic S, Beardall J (2014) CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability. Photosynth Res 121(2–3):213–221PubMedCrossRefGoogle Scholar
  104. Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond Ser B Biol Sci 361(1474):1837–1843CrossRefGoogle Scholar
  105. Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71(14):5357–5360PubMedCrossRefGoogle Scholar
  106. Stierle AA, Stierle DB, Girtsman T, Mou TC, Antczak C, Djaballah H (2015) Azaphilones from an acid mine extremophile strain of a Pleurostomophora sp. J Nat Prod 78(12):2917–2923.  https://doi.org/10.1021/acs.jnatprod.5b00519. Epub 2015 Dec 7CrossRefPubMedPubMedCentralGoogle Scholar
  107. Stivaletta N, Barbieri R, Billi D (2012) Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig Life Evol Biosph 42(2):187–200PubMedCrossRefGoogle Scholar
  108. Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6(1):39–44PubMedCrossRefGoogle Scholar
  109. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69(9):5157–5169.  https://doi.org/10.1128/AEM.69.9.5157-5169.2003CrossRefPubMedPubMedCentralGoogle Scholar
  110. Tsao JH, Kaneshiro MK, Yu S, Clark DS (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. Biotechnol Bioeng 43:258–261PubMedCrossRefGoogle Scholar
  111. Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29:1–11CrossRefGoogle Scholar
  112. Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I, Kaplan A (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol 210(4):1229–1243PubMedCrossRefGoogle Scholar
  113. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372PubMedCrossRefGoogle Scholar
  114. Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus Cereus MTCC 8372. Acta Microbiol Immunol Hung 57(3):191–207PubMedCrossRefGoogle Scholar
  115. Wang J, Bibra M, Rathinam NK, Salem D, Gadhamshetty VR, Sani RK (2018) Biohydrogen production from space crew’s waste simulants using thermophilic consolidated bioprocessing. Bioresour Technol.  https://doi.org/10.1016/j.biortech.2018.01.109
  116. Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2(3):257–267PubMedCrossRefGoogle Scholar
  117. Wiegel J, Kevbrin VV (2004) Alkalithermophiles. Biochem Soc Trans 32(Pt 2):193–198PubMedCrossRefGoogle Scholar
  118. Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in Halite Rocks from the Hyperarid Core of the Atacama Desert. Astrobiology 6(3):415–422PubMedCrossRefGoogle Scholar
  119. Willquist K, Zeidan AA, van Niel EW (2010) Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Fact 9:89.  https://doi.org/10.1186/1475-2859-9-89CrossRefPubMedPubMedCentralGoogle Scholar
  120. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2(11):1146–1156PubMedCrossRefGoogle Scholar
  121. Xia W, Dong H, Zheng C, Cui Q, He P, Tang Y (2015) Hydrocarbon degradation by a newly isolated thermophilic Anoxybacillus sp. with bioemulsifier production and new alkB genes. RSC Adv 5:102367–102377CrossRefGoogle Scholar
  122. Xiang X, Dong X, Huang L (2003) Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China. Extremophiles 7:493PubMedCrossRefGoogle Scholar
  123. Xiao X, Wang P, Zeng X, Bartlett DH, Wang F (2007) Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol 57(Pt 1):60–65PubMedCrossRefGoogle Scholar
  124. Yamada H, Shimizu S (1988) Microbial and enzymatic processes for the production of biologically and chemically useful compounds. Angew Chem 27(5):622–642CrossRefGoogle Scholar
  125. Yang SH, Lee JH, Ryu JS, Kato C, Kim SJ (2007) Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep-sea sediments. Int J Syst Evol Microbiol 57(Pt 2):208–212PubMedCrossRefGoogle Scholar
  126. Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep sea barophilic bacterium and some of its growth characteristics. Science 205:808–810PubMedCrossRefGoogle Scholar
  127. Yayanos AA, Dietz AS, Van Boxtel R (1982) Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol 44:1356–1361PubMedPubMedCentralGoogle Scholar
  128. Yu L, Yuan Y, Tang J, Zhou S (2017) Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry 117:23–28PubMedCrossRefGoogle Scholar
  129. Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinèar C et al (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:708PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zalar P, de Hoog GS, Schroers HJ, Frank JM, GundeCimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.) Antonie Van Leeuwenhoek 87:311–328PubMedCrossRefGoogle Scholar
  132. Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15(5):611–618CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA
  2. 2.Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations