Electrical Impedance Signal Analysis for Medical Diagnosis

  • Francisco Miguel Vargas LunaEmail author
  • Marco Balleza-Ordaz
  • María Raquel Huerta Franco
  • Pere Riu


Electrical bioimpedance (EBI) depends on physical, biological, or chemical characteristics of the biological sample. EBI measurements provide an alternative to observe in human and nonhuman subjects the following aspects: special features, biological changes compared with controls, different stages, changes in time, or any other issue to establish identification or association with a disease condition, stage, or evolution. Many researchers have addressed this relationship, with a huge amount of possibilities, for example, in body composition, skin and breast tumor/cancer, kidney problems, edema, in the quality and quantity of muscle/fat/water, in the case of lung function/condition, gastric motility, knee injuries, etc. How safe, accurate, sensitive, and specific are these alternatives in medical diagnosis is the subject of this chapter.

Scope: Without the aim of being exhaustive, the purpose of this chapter is to give a general overview on the use of electrical bioimpedance devices, methodologies, and signal analysis to the medical diagnosis. This chapter also comprises different options, to acquire, process, analyze, and interpret EBI data and/or parameters, with the intention to achieve, improve, or complement the diagnosis of a disease, the stage, or the determination of a physiological function monitoring. The aforementioned is important to clinical diagnosis and treatment. This chapter addresses handicaps, challenges, and of course the achievements of this goal, mainly in the most recent research work performed in the EBI area.


Electrical bioImpedance Medical diagnosis Signal analysis Tomography Tissue characterization 


  1. Aleman-Mateo, H., Rush, E., Esparza-Romero, J., Ferriolli, E., Ramirez-Zea, M., Bour, A., et al. (2010). Prediction of fat-free mass by bioelectrical impedance analysis in older adults from developing countries: A cross-validation study using the deuterium dilution method. The Journal of Nutrition, Health & Aging, 14(6), 418–426. Scholar
  2. Askanazi, J., Silverberg, P. A., Foster, R. J., Hyman, A. I., Milic-Emili, J., & Kinney, J. M. (1980). Effects of respiratory apparatous on breathing pattern. Journal of Applied Physiology, 48, 577–580. PMID:6769880.CrossRefGoogle Scholar
  3. Atefi, S. R., Seoane, F., Thorlin, T., & Lindecrantz, K. (2013). Stroke damage detection using classification trees on electrical bioimpedance cerebral spectroscopy measurements. Sensors, 13(8), 10074–10086. CrossRefGoogle Scholar
  4. Bahramiabarghouei, H., Porter, E., Santorelli, A., Gosselin, B., Popović, M., & Rusch, L. A. (2015). Flexible 16 antenna Array for microwave breast cancer detection. IEEE Transactions on Biomedical Engineering, 62(10), 2516–2525. CrossRefGoogle Scholar
  5. Balleza, M., Calaf, N., Feixas, T., Gonzalez, M., Antón, D., Riu, P. J., et al. (2009). Measuring breathing pattern in patients with chronic obstructive pulmonary disease by electrical impedance tomography. Archivos de Bronconeumología, 45, 320–324. CrossRefGoogle Scholar
  6. Balleza, M., Fornos, J., Calaf, N., Feixas, T., Gonzalez, M., Antón, D., et al. (2007). Monitoring of breathing pattern at rest by electrical impedance tomography. Archivos de Bronconeumología, 43, 300–303. PMID:17583638.CrossRefGoogle Scholar
  7. Balleza-Ordaz, M., Perez-Alday, E., Vargas-Luna, M., & Riu, J. P. (2015). Tidal volume monitoring by electrical impedance tomography (EIT) using different regions of interest (ROI): Calibration equations. Biomedical Signal Processing and Control, 18, 102–109. CrossRefGoogle Scholar
  8. Barrea, L., Macchia, P. E., Somma, C., Napolitano, M., Balato, A., Falco, A., et al. (2016). Bioelectrical phase angle and psoriasis: A novel association with psoriasis severity, quality of life and metabolic syndrome. Journal of Translational Medicine, 14(1), 130. CrossRefGoogle Scholar
  9. Bernstein, D. P., & Lemmens, H. J. (2005). Stroke volume equation for impedance cardiography. Medical & Biological Engineering & Computing, 43(4), 443–450. CrossRefGoogle Scholar
  10. Broers, N. J., Martens, R. J., Cornelis, T., Diederen, N. M., Wabel, P., van der Sande, F. M., et al. (2015). Body composition in dialysis patients: A functional assessment of bioimpedance using different prediction models. Journal of Renal Nutrition, 25(2), 121–128. Scholar
  11. Brown, B. H. (2003). Electrical impedance tomography (EIT): A review. Journal of Medical Engineering & Technology., 27(3), 97–108. CrossRefGoogle Scholar
  12. Brown, B. H., Barber, D. C., & Seagar, A. D. (1985). Applied potential tomography: Possible clinical applications. Clinical Physics and Physiological Measurement, 6, 109–121. CrossRefGoogle Scholar
  13. Brown, B. H., Milnes, P., Abdul, S., & Tidy, J. A. (2005). Detection of cervical intraepithelial neoplasia using impedance spectroscopy: A prospective study. BJOG, 112(6), 802–806. CrossRefGoogle Scholar
  14. Bundred, N. J., Stockton, C., Keeley, V., Riches, K., Ashcroft, L., Evans, A., et al. (2015). Comparison of multi-frequency bioimpedance with perometry for the early detection and intervention oflymphoedema after axillary node clearance for breast cancer. Breast Cancer Research and Treatment, 151(1), 121–129. Scholar
  15. Cinca, J., Ramos, J., Garcia, M. A., Bragos, R., Bayés-Genis, A., Salazar, Y., et al. (2008). Changes in myocardial electrical impedance in human heart graft rejection. European Journal of Heart Failure, 10(6), 594–600. CrossRefGoogle Scholar
  16. Cole, K. S. (1928). Electric impedance of suspensions of arbacia eggs. The Journal of General Physiology, 12(1), 37–54. PMID:19872447.CrossRefGoogle Scholar
  17. Cole, K. S., & Cole, R. H. (1936). Electric impedance of asterias eggs. The Journal of General Physiology, 19(4), 609–623. PMID:19872951.CrossRefGoogle Scholar
  18. Corciovă, C., Turnea, M., Matei, D., & Andritoi, D. (2012). Evaluation of cardiac parameters using electrical impedance plethysmography. Revista Medico-Chirurgicală̆ a Societă̆ţ̜ii de Medici ş̧i Naturaliş̧ti din Iaş̧i, 116(3), 927–932. PMID:23272554.Google Scholar
  19. Das, L., Das, S., & Chatterjee, J. (2015). Electrical bioimpedance analysis: A new method in cervical cancer screening. Journal of Medical Engineering, 2015, 636075. CrossRefGoogle Scholar
  20. Davis, M. P., Yavuzsen, T., Khoshknabi, D., Kirkova, J., Walsh, D., Laseen, W., et al. (2009). Bioelectric impedance phase angle changes during hydration and prognosis in advanced cancer. The American Journal of Hospice & Palliative Care, 26, 180–187. Scholar
  21. Di Somma, S., Vetrone, F., & Maisel, A. S. (2014). Bioimpedance vector analysis (BIVA) for diagnosis and Management of Acute Heart Failure. Current Emergency and Hospital Medicine Reports, 2, 104–111. Google Scholar
  22. Dorna Mde, S., Santos, L. A., Gondo, F. F., Augusti, L., de Campos Franzoni, L., Sassaki, L. Y., et al. (2016). Phase angle is associated with advanced fibrosis in patients chronically infected with hepatitis C virus. Life Sciences, 154, 30–33. Scholar
  23. Eyüboglu, B. M., Öner, A. F., Baysal, U., Biber, C., Keyf, A. I., Yilmaz, U., et al. (1995). Aplication of electrical impedance tomography in diagnosis of emphysema – A clinical study. Physiological Measurement, 16, A191–A211. CrossRefGoogle Scholar
  24. Fellahi, J. L., & Fischer, M. O. (2014). Electrical bioimpedance cardiography: An old technology with new hopes for the future. Journal of Cardiothoracic and Vascular Anesthesia, 28(3), 755–760. CrossRefGoogle Scholar
  25. Foster, K. R., & Schwan, H. P. (1989). Dielectric properties of tissues and biological materials: A critical review. Critical Reviews in Biomedical Engineering, 17, 25–104. PMID: 2651001.Google Scholar
  26. Frank, E. H., & Grodzinsky, A. J. (1987). Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. Journal of Biomechanics, 20, 615–627. CrossRefGoogle Scholar
  27. Fricke, H. (1925). The electric capacity of suspensions with special reference to blood. The Journal of General Physiology, 9(2), 137–152. PMID:19872238.CrossRefGoogle Scholar
  28. Fricke, H., & Curtis, H. J. (1935). The electric impedance of hemolyzed suspensions of mammalian erythrocytes. The Journal of General Physiology, 18(6), 821–836. PMID:19872891.CrossRefGoogle Scholar
  29. Gajre, S. S., Singh, U., Saxena, R. K., & Anand, S. (2007). Electrical impedance signal analysis in assessing the possibility of non-invasive diagnosis of knee osteoarthritis. Journal of Medical Engineering & Technology, 31(4), 288–299. CrossRefGoogle Scholar
  30. Génot, N., Mewton, N., Bresson, D., Zouaghi, O., Francois, L., Delwarde, B., et al. (2015). Bioelectrical impedance analysis for heart failure diagnosis in the ED. The American Journal of Emergency Medicine, 33(8), 1025–1029. Scholar
  31. Giouvanoudi, A. C., & Spyrou, N. M. (2008). Epigastric electrical impedance for the quantitative determination of the gastric acidity. Physiological Measurement, 29(11), 1305–1317. CrossRefGoogle Scholar
  32. Grimnes, S., & Martinsen, O. (2014). Bioimpedance and bioelectricity basics (3rd ed.). Academic Press. ISBN:9780124114708.Google Scholar
  33. Gupta, D., Lammersfeld, C. A., Burrows, J. L., Dahlk, S. L., Vashi, P. G., Grutsch, J. F., et al. (2004). Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in advanced colorectal cancer. The American Journal of Clinical Nutrition, 80(6), 1634–1638.CrossRefGoogle Scholar
  34. Gupta, D., Lis, C. G., Dahlk, S. L., King, J., Vashi, P. G., Grutsch, J. F., et al. (2008). The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutrition Journal, 7, 19. Google Scholar
  35. Han, S. I., & Han, K. H. (2015). Electrical detection method for circulating tumor cells using Graphene Nanoplates. Analytical Chemistry, 87(20), 10585–10592. CrossRefGoogle Scholar
  36. Harris, N. D., Sugget, A. J., & Barber, D. C. (1987). Applications of applied potential tomography (APT) in respiratory medicine. Clinical Physics and Physiological Measurement, 8, 155–165. CrossRefGoogle Scholar
  37. Harris, N. D., Suggett, A. J., Barber, D. C., & Brown, B. (1988). Applied potential tomography: A new technique for monitoring pulmonary function. Clinical Physics and Physiological Measurement, 9(A), 79–85. CrossRefGoogle Scholar
  38. Har-Shai, Y., Glickman, Y. A., Siller, G., McLeod, R., Topaz, M., Howe, C., et al. (2005). Electrical impedance scanning for melanoma diagnosis: A validation study. Plastic and Reconstructive Surgery, 116(3), 782–790. CrossRefGoogle Scholar
  39. Hastuti, J., Kaagawa, M., Byrne, N. M., & Hills, A. P. (2016). Proposal of new body composition prediction equations from bioelectrical impedance for Indonesian men. European Journal of Clinical Nutrition, 70(11), 1271–1277. CrossRefGoogle Scholar
  40. Haverkort, E. B., Reijven, P. L., Binnekade, J. M., de van der Schueren, M. A., Earthman, C. P., Gouma, D. J., et al. (2015). Bioelectrical impedance analysis to estimate body composition in surgical and oncological patients: Asystematic review. European Journal of Clinical Nutrition, 69(1), 3–13. Scholar
  41. Hoffer, E. C., Meador, C. K., & Simpson, D. C. (1969). Correlation of whole-body impedance with total body water volume. Journal of Applied Physiology, 27(4), 531–534. PMID:4898406.CrossRefGoogle Scholar
  42. Holder, D. S., & Temple, A. J. (1993). Effectiveness of the Sheffield EIT system in distinguishing patients with pulmonary pathology from a series of normal subjects. In D. S. Holder (Ed.), Clinical and physiological applications of electrical impedance tomography (1st ed., pp. 277–298). London: CRC Press. ISBN-13: 978–1857281644.Google Scholar
  43. Hong, J.-L., Lan, K.-C., & Jang, L.-S. (2012). Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement. Sensors and Actuators B: Chemical, 173, 927–934. CrossRefGoogle Scholar
  44. Houtveen, J. H., Groot, P. F., & de Geus, E. J. (2006). Validation of the thoracic impedance derived respiratory signal using multilevel analysis. International Journal of Psychophysiology, 59(2), 97–106. CrossRefGoogle Scholar
  45. Huerta-Franco, M. R., Vargas-Luna, M., Montes-Frausto, J. B., Flores-Hernández, C., & Morales-Mata, I. (2012). Electrical bioimpedance and other techniques for gastric emptying and motility evaluation. World Journal of Gastrointestinal Pathophysiology, 3(1), 10–18. Scholar
  46. Khalil, S. F., Mohktar, M. S., & Ibrahim, F. (2014). The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors, 14(6), 10895–10928. CrossRefGoogle Scholar
  47. Khalil, S. F., Mohktar, M. S., & Ibrahim, F. (2016). Bioimpedance vector analysis in diagnosing severe and non-severe dengue patients. Sensors, 16(6), 911. CrossRefGoogle Scholar
  48. Khan, S., Mahara, A., Hyams, E. S., Schned, A. R., & Halter, R. J. (2016). Prostate cancer detection using composite impedance metric. IEEE Transactions on Medical Imaging, 35(12), 2513–2523. Scholar
  49. Kim, J. S., Lee, J. Y., Park, H., Han, B. G., Choi, S. O., & Yang, J. W. (2014). Estimation of body fluid volume by bioimpedance spectroscopy in patients with hyponatremia. Yonsei Medical Journal, 55(2), 482–486. Scholar
  50. Kose, S. B., Hur, E., Magden, K., Yildiz, G., Colak, D., Kucuk, E., et al. (2015). Bioimpedance spectroscopy for the differential diagnosis of hyponatremia. Renal Failure, 37(6), 947–950. Scholar
  51. Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., & Mattson, R. H. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37(12), 1208–1212. PMID: 5339656.Google Scholar
  52. Kushner, R. F., Schoeller, D. A., Fjeld, C. R., & Danford, L. (1992). Is the impedance index (ht2/R) significant in predicting total body water? The American Journal of Clinical Nutrition, 56(5), 835–839. PMID:1415001.CrossRefGoogle Scholar
  53. Kyle, U. G., Earthman, C. P., Pichard, C., & Coss-Bu, J. A. (2015). Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. European Journal of Clinical Nutrition, 69(12), 1298–1305. Scholar
  54. Langer, R. D., Borges, J. H., Pascoa, M. A., Cirolini, V. X., Guerra-Júnior, G., & Gonçalves, E. M. (2016). Validity of bioelectrical impedance analysis to estimation fat-free mass in the Army cadets. Nutrients, 8(3), 121. CrossRefGoogle Scholar
  55. Lardiés-Sánchez, B., Sanz-Paris, A., Boj-Carceller, D., & Cruz-Jentoft, A. J. (2016). Systematic review: Prevalence of sarcopenia in ageing people using bioelectrical impedance analysis to assess muscle mass. European Geriatric Medicine, 7(3), 256–261. Scholar
  56. Lorne, E., Mahjoub, Y., Diouf, M., Sleghem, J., Buchalet, C., Guinot, P. G., et al. (2014). Accuracy of impedance cardiography for evaluating trends in cardiac output: A comparison with oesophageal Doppler. British Journal of Anaesthesia, 113(4), 596–602. Scholar
  57. Lukaski, H. C. (2013). Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. European Journal of Clinical Nutrition, 67(Suppl 1), S2–S9. CrossRefGoogle Scholar
  58. Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W., & Lykken, G. I. (2016). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American Journal of Clinical Nutrition, 41(4), 810–817. PMID:3984933.CrossRefGoogle Scholar
  59. Maass, S. W., Roekaerts, P. M., & Lancé, M. D. (2014). Cardiac output measurement by bioimpedance and noninvasive pulse contour analysis compared with the continuous pulmonary artery thermodilution technique. Journal of Cardiothoracic and Vascular Anesthesia, 28(3), 534–539. CrossRefGoogle Scholar
  60. Macfarlane, D. J., Chan, N. T., Tse, M. A., & Joe, G. M. (2016). Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention. Journal of Sports Sciences, 34(12), 1176–1181. Scholar
  61. Malvehy, J., Hauschild, A., Curiel-Lewandrowski, C., Mohr, P., Hofmann-Wellenhof, R., Motle, R., et al. (2014). Clinical performance of the Nevisense system in cutaneous melanoma detection: An international, multi-centre, prospective and blinded clinical trial on efficacy and safety. The British Journal of Dermatology, 171(5), 1099–1107. Scholar
  62. Maskarinec, G., Morimoto, Y., Laguana, M. B., Novotny, R., & Leon-Guerrero, R. T. (2016). Bioimpedence to assess breast density as a risk factor for breast cancer in adult women and adolescent girls. Asian Pacific Journal of Cancer Prevention, 17(1), 65–71. Scholar
  63. Masuda, T., & Komiya, S. (2004). A prediction equation for total body water from bioelectrical impedance in Japanese children. Journal of Physiological Anthropology and Applied Human Science, 23(2), 35–39. CrossRefGoogle Scholar
  64. Matias, C. N., Santos, D. A., Júdice, P. B., Magalhães, J. P., Minderico, C. S., Fields, D. A., et al. (2016). Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clinical Nutrition, 35(2), 468–474. Scholar
  65. Mishra, V., Schned, A. R., Hartov, A., Heaney, J. A., Seigne, J., & Halter, R. J. (2013). Electrical property sensing biopsy needle for prostate cancer detection. Prostate, 73(15), 1603–1613. Scholar
  66. Moawad, F. J., Betteridge, J. D., Boger, J. A., Cheng, F. K., Belle, L. S., Chen, Y. J., et al. (2013). Reflux episodes detected by impedance in patients on and off esomeprazole: A randomised double-blinded placebo-controlled crossover study. Alimentary Pharmacology & Therapeutics, 37(10), 1011–1018. Scholar
  67. Mohr, P., Birgersson, U., Berking, C., Henderson, C., Trefzer, U., Kemeny, L., et al. (2013). Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Research and Technology, 19, 75–83. Scholar
  68. Neves, E. B., Pino, A. V., de Almeida, R. M., & de Souza, M. N. (2009). Knee bioelectric impedance assessment in healthy/with osteoarthritis subjects. Physiological Measurement, 31(2), 207–219. CrossRefGoogle Scholar
  69. Paek, D., & McCool, D. (1992). Breathing patterns during varied activities. Journal of Applied Physiology, 73, 887–893. PMID:1400052.CrossRefGoogle Scholar
  70. Pandya, H. J., Kim, H. T., Roy, R., Chen, W., Cong, L., Zhong, H., et al. (2014). Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements. Sensors & Actuators B: Chemical, 199, 259–268. Scholar
  71. Perez, W., & Tobin, M. J. (1985). Separation of factor responsible for change in breathing pattern induced by instrumentation. Journal of Applied Physiology, 59, 1515–1520. PMID:4066581.CrossRefGoogle Scholar
  72. Pichonnaz, C., Bassin, J. P., Lécureux, E., Currat, D., & Jolles, B. M. (2015). Bioimpedance spectroscopy for swelling evaluation following total knee arthroplasty: A validation study. BMC Musculoskeletal Disorders, 16, 100. Scholar
  73. Porter, E., Bahrami, H., Santorelli, A., Gosselin, B., Rusch, L. A., & Popovic, M. (2016). A wearable microwave antenna Array for time-domain breast tumor screening. IEEE Transactions on Medical Imaging, 35(6), 1501–1509. Scholar
  74. Ravi, K., & Katzka, D. A. (2016). Esophageal impedance monitoring: Clinical pearls and pitfalls. The American Journal of Gastroenterology, 111(9), 1245–1256. CrossRefGoogle Scholar
  75. Rubbieri, G., Mossello, E., & Di Bari, M. (2014). Techniques for the diagnosis of sarcopenia. Clinical Cases in Mineral and Bone Metabolism, 11(3), 181–184. PMCID: PMC4269140.Google Scholar
  76. Salazar, Y., Bragos, R., Casas, O., Cinca, J., & Rosell, J. (2004). Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium. IEEE Transactions on Biomedical Engineering, 51(8), 1421–1427. CrossRefGoogle Scholar
  77. Sánchez, B., Vandersteen, G., Martin, I., Castillo, D., Torrego, A., Riu, P. J., et al. (2013). In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study. Medical Engineering & Physics, 35(7), 949–957. CrossRefGoogle Scholar
  78. Schwan, H. P. (1957). Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics, 5, 147–209. PMID:13520431.CrossRefGoogle Scholar
  79. Schwan, H. P., & Kay, C. F. (1957a). Capacitive properties of body tissues. Circulation Research, 5(4), 439–443. PMID:13447191.CrossRefGoogle Scholar
  80. Schwan, H. P., & Kay, C. F. (1957b). The conductivity of living tissues. Annals of the New York Academy of Sciences, 65(6), 1007–1013. PMID:13459187.CrossRefGoogle Scholar
  81. Seward, C., Skolny, M., Brunelle, C., Asdourian, M., Salama, L., & Taghian, A. G. (2016). A comprehensive review of bioimpedance spectroscopy as a diagnostic tool for the detection and measurement of breast cancer-related lymphedema. Journal of Surgical Oncology, 114(5), 537–542.
  82. Shah, C., Vicini, F. A., & Arthur, D. (2016). Bioimpedance spectroscopy for breast cancer related lymphedema assessment: Clinical practice guidelines. The Breast Journal, 22(6), 645–650.
  83. Stick, S. M., Ellis, E., LeSouëf, P. N., & Sly, P. D. (1992). Validation of respiratory inductance plethysmography (“Respitrace”) for the measurement of tidal breathing parameters in newborns. Pediatric Pulmonology, 14(3), 187–191. CrossRefGoogle Scholar
  84. Sun, S. S., Chumlea, W. C., Heymsfield, S. B., Lukaski, H. C., Schoeller, D., Friedl, K., et al. (2003). Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. The American Journal of Clinical Nutrition, 77, 331–440. PMID:12540391.CrossRefGoogle Scholar
  85. Tyagi, R., Mishra, S., Gaur, N., Panwar, A., Saini, D., Singh, K., et al. (2016). Bioelectric impedance phase angle in carcinoma prostate - a hospital-based study. International Journal of Medical Science and Public Health, 5(9), 1826–1830. Scholar
  86. Verney, J., Metz, L., Chaplais, E., Cardenoux, C., Pereira, B., & Thivel, D. (2016). Bioelectrical impedance is an accurate method to assess body composition in obese but not severely obese adolescents. Nutrition Research, 36(7), 663–670. Scholar
  87. Voscopoulos, C., Brayanov, J., Ladd, D., Lalli, M., Panasyuk, A., & Freeman, J. (2013). Evaluation of a novel noninvasive respiration monitor providing continuous measurement of minute ventilation in ambulatory subjects in a variety of clinical scenarios. Anesthesia & Analgesia, 117(1), 91–100. CrossRefGoogle Scholar
  88. Voscopoulos, C., Ladd, D., Campana, L., & George, E. (2014). Non-invasive respiratory volume monitoring to detect apnea in post-operative patients: Case series. Journal of Clinical Medicine Research, 6(3), 209–214. Google Scholar
  89. Weitzen, R., Epstein, N., Shoenfeld, Y., & Zimlichman, E. (2007). Diagnosing diseases by measurement of electrical skin impedance: A novel technique. Annals of the New York Academy of Sciences, 1109, 185–192. Scholar
  90. Wickramasinghe, V. P., Lamabadusuriya, S. P., Cleghorn, G. J., & Davies, P. S. W. (2008). Assessment of body composition in Sri Lankan children: Validation of a bioelectrical impedance prediction equation. European Journal of Clinical Nutrition, 62(10), 1170–1177. CrossRefGoogle Scholar
  91. Woltjer, H. H., Bogaard, H. J., & de Vries, P. M. (1997). The technique of impedance cardiography. European Heart Journal, 18(9), 1396–1403. PMID:9458444.CrossRefGoogle Scholar
  92. Yazdanian, H., Mahnam, A., Edrisi, M., & Esfahani, M. A. (2016). Design and implementation of a portable impedance cardiography system for noninvasive stroke volume monitoring. Journal of Medical Signals and Sensors, 6(1), 47–56. PMID:27014612.Google Scholar
  93. Zhang, X., Chatwin, C., & Barber, D. C. (2015). A feasibility study of a rotary planar electrode array for electrical impedance mammography using a digital breast phantom. Physiological Measurement, 6(6), 1311–1335. CrossRefGoogle Scholar
  94. Zhang, X., Wang, W., Sze, G., Barber, D., & Chatwin, C. (2014). An image reconstruction algorithm for 3-D electrical impedance mammography. IEEE Transactions on Medical Imaging, 33(12), 2223–2241. Scholar
  95. Zhou, L. Y., Wang, Y., Lu, J. J., Lin, L., Cui, R. L., Zhang, H. J., et al. (2014). Accuracy of diagnosing gastroesophageal reflux disease by Gerd Q, esophageal impedance monitoring and histology. Journal of Digestive Diseases, 15(5), 230–238. Scholar
  96. Zouridakis, A., Simos, Y. V., Verginadis, I. I., Charalabopoulos, K., Ragos, V., Dounousi, E., et al. (2016). Correlation of bioelectrical impedance analysis phase angle with changes in oxidative stress on end-stage renal disease patients, before, during, and after dialysis. Renal Failure, 38(5), 738–743. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francisco Miguel Vargas Luna
    • 1
    Email author
  • Marco Balleza-Ordaz
    • 1
  • María Raquel Huerta Franco
    • 2
  • Pere Riu
    • 3
  1. 1.Physical Engineering DepartmentUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Applied Science to WorkUniversidad de GuanajuatoGuanajuatoMexico
  3. 3.Departament d’Enginyeria ElectrònicaUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations