Neumann Series
Chapter
First Online:
Abstract
The goal of present chapter is to study in details the integral representations of the Neumann series (of the first and second type) of Bessel and modified Bessel functions of the first and second kind. In order to achieve our goal we use several methods: the Euler–Maclaurin summation technique, differential equation technique, fractional integration technique. Moreover, we present some interesting results on the coefficients of Neumann series, product of modified Bessel functions of the first and second kind and the cumulative distribution function of the non-central χ2-distribution.
References
- 1.Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)Google Scholar
- 2.Agrest, M.M., Maksimov, M.S.: Theory of Incomplete Cylindrical Functions and their Applications. Springer, New York (1971)Google Scholar
- 4.Al-Jarrah, A., Dempsey, K.M., Glasser, M.L.: Generalized series of Bessel functions. J. Comput. Appl. Math. 143, 1–8 (2002)Google Scholar
- 5.Al-Salam, W.A.: A generalized Turán expression for Bessel functions. Am. Math. Mon. 68(2), 146–149 (1961)Google Scholar
- 6.András, S., Baricz, Á., Sun, Y.: The generalized Marcum Q-function: an orthogonal polynomial approach. Acta Univ. Sapientiae Math. 3(1), 60–76 (2011)Google Scholar
- 7.Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and it Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
- 11.Bailey, W.N.: Generalized Hypergeometric Series. Cambridge Tract, vol. 32. Cambridge University Press, Cambridge (1935)Google Scholar
- 13.Baricz, Á.: On a product of modified Bessel functions. Proc. Am. Math. Soc. 137(1), 189–193 (2009)Google Scholar
- 14.Baricz, Á.: Bounds for modified Bessel functions of the first and second kind. Proc. Edin. Math. Soc. 53(3), 575–599 (2010)Google Scholar
- 15.Baricz, Á.: Generalized Bessel functions of the first kind. Lecture Notes in Mathematics, vol. 1994. Springer, Berlin (2010)Google Scholar
- 20.Baricz, Á., Pogány, T.K.: Properties of the product of modified Bessel functions. In: Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 809–820. Springer, Berlin (2014). In Honor of Hari M. SrivastavaGoogle Scholar
- 21.Baricz, Á., Pogány, T.K.: Turán determinants of Bessel functions. Forum Math. 26(1), 295–322 (2014)Google Scholar
- 22.Baricz, Á., Ponnusamy, S.: On Turán type inequalities for modified Bessel functions. Proc. Am. Math. Soc. 141(2), 523–532 (2013)Google Scholar
- 24.Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of Bessel functions I ν, Y ν and K ν. Proc. Am. Math. Soc. 140(3), 951–960 (2012)Google Scholar
- 25.Baricz, Á., Jankov, D., Pogány, T.K.: Neumann series of Bessel functions. Integral Transforms Spec. Funct. 23(7), 529–538 (2012)Google Scholar
- 26.Baricz, Á., Jankov, D., Pogány, T.K.: Turán type inequalities for Krätzel functions. J. Math. Anal. Appl. 388(2), 716–724 (2012)Google Scholar
- 43.Brychkov, Yu.A.: On some properties of the Marcum Q function. Integral Transforms Spec. Funct. 23(3), 177–182 (2012)Google Scholar
- 49.Chaudhry, M.A., Zubair, S.M.: Generalized incomplete gamma function with applications. J. Comput. Appl. Math. 55, 99–124 (1994)Google Scholar
- 51.Chessin, A.S.: Sur l’équation de Bessel avec second membre. Compt. Rend. 135, 678–679 (1902)Google Scholar
- 52.Chessin, A.S.: Sur une classe d’équations différentielles réductibles a l’équation de Bessel. Compt. Rend. 136, 1124–1126 (1903)Google Scholar
- 56.Cochran, J.A.: The monotonicity of modified Bessel functions with respect to their order. J. Math. Phys. 46, 220–222 (1967)Google Scholar
- 60.De Micheli, E.: Integral representation for Bessel’s functions of the first kind and Neumann series (2017). arXiv:1708.09715v1 [math.CA]Google Scholar
- 62.Delfino, F., Procopio, R., Rossi, M.: Evaluation of capacitance matrix of a finite-length multiconductor transmission line. IEE Proc.: Sci. Meas. Technol. 151, 347–353 (2004)Google Scholar
- 78.Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York, Toronto, London (1953)Google Scholar
- 80.Fejzullahu, B.Xh.: Neumann series and Lommel functions of two variables. Integral Transforms Spec. Funct. 27(6), 443–453 (2016)Google Scholar
- 93.Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, CA (2000)Google Scholar
- 94.Graham, R.L.: Application of the FKG inequality and its relatives. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 115–131. Springer, Berlin (1983)Google Scholar
- 95.Grandison, S., Penfold, R., Vanden-Broeck, J.M.: A rapid boundary integral equation technique for protein electrostatics. J. Comput. Phys. 224, 663–680 (2007)Google Scholar
- 96.Gröbner, W., Hofreiter, N.: Integraltafel: Zweiter Teil. Bestimmte Integrale. Springer, Wien (1973)Google Scholar
- 102.Hansen, E.R.: A Table of Series and Products. Prentice-Hall, Englewood Cliffs, NJ (1975)Google Scholar
- 103.Hantush, M.S., Jacob, C.E.: Non-steady radial flow in an infinite leaky aquifer. Trans. Am. Geophys. Union 36, 95–100 (1955)Google Scholar
- 107.Hasan, A.A.: Electrogravitational stability of oscillating streaming fluid cylinder. Phys. B. 406, 234–240 (2011)Google Scholar
- 113.http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F2/03/03/07/09/0004/ (2016). Accessed 31 Oct 2016
- 114.http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F2/03/03/09/11/0003/ (2016). Accessed 31 Oct 2016
- 116.http://functions.wolfram.com/07.20.07.0002.01 (2016). Accessed 31 Oct 2016
- 118.http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/20/01/02/0004/ (2016). Accessed 31 Oct 2016
- 123.http://mathworld.wolfram.com/MarcumQ-Function.html (2016). Accessed 31 Oct 2016
- 125.Ismail, M.E.H.: Complete monotonicity of modified Bessel functions. Proc. Am. Math. Soc. 108(2), 353–361 (1990)Google Scholar
- 134.Jankov, D., Pogány, T.K., Süli, E.: On the coefficients of Neumann series of Bessel functions. J. Math. Anal. Appl. 380(2), 628–631 (2011)Google Scholar
- 138.Jankov Maširević, D.: On new formulas for the cumulative distribution function of the noncentral chi-square distribution. Mediterr. J. Math. 14(2), Art 66, 13 pp. (2017)Google Scholar
- 139.Jankov Maširević, D., Pogány, T.K.: New summations of Neumann series of modified Bessel functions. J. Anal. 23, 47–57 (2015)Google Scholar
- 142.Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2. Wiley, New York (1995)Google Scholar
- 143.Jones, A.L.: An extension of an inequality involving modified Bessel functions. J. Math. Phys. 47, 220–221 (1968)Google Scholar
- 147.Karamata, J.: Theory and Applications of Stieltjes integral. Srpska Akademija Nauka, Posebna izdanja CLIV, Matematički institut, Knjiga I, Beograd (1949) (in Serbian)Google Scholar
- 148.Karatsuba, E.A., Moretti, P.: Inversion time of large spins. J. Math. Phys. 46(4), 042101:1–7 (2005)Google Scholar
- 152.Klimek, S., McBride, M.: Global boundary conditions for a Dirac operator on the solid torus. J. Math. Phys. 52, Article 063518, 14 pp. (2011)Google Scholar
- 162.Kravchenko, V.V., Torba, S.M.: A Neumann series of Bessel functions representation for solutions of Sturm-Liouville equations (2016). arXiv:1612.08803v1 [math.CA]Google Scholar
- 163.Kravchenko, V.V., Torba, S.M., Castillo-Prez, R.: A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations. Appl. Anal. (2017). 10.1080/00036811.2017.1284313Google Scholar
- 164.Kravchenko, V.V., Navarro, L.J., Torba, S.M.: Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions. Appl. Math. Comput. 314, 173–192 (2017)Google Scholar
- 165.Laforgia, A.: Bounds for modified Bessel functions. J. Comput. Appl. Math. 34(3), 263–267 (1991)Google Scholar
- 173.Lin, S.D., Shyu, J.C., Nishimoto, K., Srivastava, H.M.: Explicit solutions of some general families of ordinary and partial differential equations associated with the Bessel equation by means of fractional calculus. J. Fract. Calc. 25, 33–45 (2004)Google Scholar
- 174.Lin, S.D., Ling, W.C., Nishimoto, K., Srivastava, H.M.: A simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 49(9–10), 1487–1498 (2005)Google Scholar
- 178.Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York-Toronto-London (1962)Google Scholar
- 181.Marcum, J.I.: A statistical theory of target detection by pulsed radar. IRE Trans. Inf. Theory 6, 59–267 (1960)Google Scholar
- 183.Martin, P.A.: Acoustic waves in slender axisymmetric tubes. J. Sound Vib. 286, 55–68 (2005)Google Scholar
- 184.Martin, P.A., Berger, J.R.: Waves in wood: free vibrations of a wooden pole. J. Mech. Phys. Solids 49, 1155–1178 (2001)Google Scholar
- 188.Maximon, L.C.: On the representation of indefinite integrals containing Bessel functions by simple Neumann series. Proc. Am. Math. Soc. 7(6), 1054–1062 (1956)Google Scholar
- 189.Mei, Z., Zhao, D., Gu, J.: Comparison of two approximate methods for hard-edged diffracted flat-topped light beams. Opt. Commun. 267, 58–64 (2006)Google Scholar
- 191.Meligy, A.S.: On Whittaker and Coulomb functions. J. Lond. Math. Soc. 37, 141–144 (1962)Google Scholar
- 203.Morales-Jimenez, D., Lopez-Martinez, F.J., Martos-Naya, E., Paris, J.F., Lozano, A.: Connections between the generalized Marcum Q-function and a class of hypergeometric functions. IEEE Trans. Inform. Theory 60(2), 1077–1082 (2014)Google Scholar
- 208.Nadon, M., Campbell, L.J.: An exact expression for transient forced internal gravity waves in a Boussinesq fluid. Wave Motion 44, 340–345 (2007)Google Scholar
- 209.Neumann, C.G.: Theorie der Besselschen Funktionen. B.G. Teubner, Leipzig (1867)Google Scholar
- 210.Newberger, B.S.: New sum rule for products of Bessel functions with application to plasma physics. J. Math. Phys. 23(7), 1278–1281 (1982)Google Scholar
- 223.Novomestky, F.: Asymptotic expression for the unit-step and dirac delta functions. SIAM J. Appl. Math. 27(4), 521–525 (1974)Google Scholar
- 224.Oberhettinger, F.: Tables of Bessel Transforms. Springer, New York (1972)Google Scholar
- 227.Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. NIST and Cambrigde University Press, Cambridge (2010)Google Scholar
- 232.Patnaik, P.B.: The non-central χ 2- and the F-distributions and their applications. Biometrika 36, 202–232 (1949)Google Scholar
- 233.Pearson, E.S.: Note on an approximation to the distribution of noncentral χ 2. Biometrika 46, 364–364 (1959)Google Scholar
- 234.Penfold, R., Vanden-Broeck, J.M., Grandison, S.: Monotonicity of some modified Bessel function products. Integral Transforms Spec. Funct. 18, 139–144 (2007)Google Scholar
- 235.Perron, O.: Zur Theorie der Dirichletschen Reihen. J. Reine Angew. Math. 134, 95–143 (1908)Google Scholar
- 237.Phillips, R.S., Malin, H.: Bessel function approximations. Am. J. Math. 72, 407–418 (1950)Google Scholar
- 249.Pogány, T.K., Süli, E.: Integral representation for Neumann series of Bessel functions. Proc. Am. Math. Soc. 137(7), 2363–2368 (2009)Google Scholar
- 252.Pogány, T.K., Srivastava, H.M., Tomovski, ž.: Some families of Mathieu a–series and alternating Mathieu a-series. Appl. Math. Comput. 173(1), 69–108 (2006)Google Scholar
- 253.Pogány, T.K., Baricz, Á., Rudas, I.: Incomplete Krätzel function model of leaky aquifer and alike functions. In: Proceedings of the 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics (May 21–23), Timişoara, Romania, pp. 59–62 (2015)Google Scholar
- 257.Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 2. Special Functions. Gordon and Breach Science Publishers, New York (1986)Google Scholar
- 261.Radwan, A.E., Hasan, A.A.: Magneto hydrodynamic stability of self-gravitational fluid cylinder. Appl. Math. Model. 33, 2121–2131 (2009)Google Scholar
- 262.Radwan, A.E., Dimian, M.F., Hadhoda, M.K.: Magnetogravitational stability of a bounded gas-core fluid jet. Appl. Energy 83, 1265–1273 (2006)Google Scholar
- 267.Reudink, D.O.: On the signs of the ν-derivatives of the modified Bessel functions I ν(x) and K ν(x). J. Res. Natl. Bur. Stand. B72, 279–280 (1968)Google Scholar
- 268.Rice, S.O.: Mathematical analysis of random noise III. Bell Syst. Tech. J. 24, 46–156 (1945)Google Scholar
- 269.Robert, C.: Modified Bessel functions and their applications in probability and statistics. Stat. Probab. Lett. 9, 155–161 (1990)Google Scholar
- 270.Robinson, N.I.: An isotropic elastic medium containing a cylindrical borehole with a rigid plug. Int. J. Solids Struct. 39, 4889–4904 (2002)Google Scholar
- 272.Salem, M.A., Kamel, A.H., Osipov, A.V.: Electromagnetic fields in the presence of an infinite dielectric wedge. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462(2), 2503–2522 (2006)Google Scholar
- 274.Sankaran, M.: Approximations to the noncentral chi-square distribution. Biometrika 50, 199–204 (1963)Google Scholar
- 282.Siemon, P.: Über die Integrale einer nicht homogenen Differentialgleichung zweiter Ordnung. In: Programm der Luisienschuhle. Sechster Abschnitt. Differential- und Integralrechnung. Capitel 5. Gewöhnliche Differentialgleichungen, Berlin (1890)Google Scholar
- 290.Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd./Halsted Press [Wiley], Chichester/New York (1985)Google Scholar
- 309.Temme, N.M.: Asymptotic and numerical aspects of the noncentral chi-square distribution. Comput. Math. Appl. 25(5), 55–63 (1993)Google Scholar
- 311.Thiruvenkatachar, V.R., Nanjundiah, T.S.: Inequalities concerning Bessel functions and orthogonal polynomials. Proc. Indian Acad. Sci. Sect. A 33, 373–384 (1951)Google Scholar
- 318.Van Heijster, P., Sandstede, B.: Planar radial spots in a three-component FitzHugh-Nagumo system. J. Nonlinear Sci. 21, 705–745 (2011)Google Scholar
- 319.Van Heijster, P., Doelman, A., Kaper, T.J.: Pulse dynamics in a three-component system: stability and bifurcations. Phys. D. Nonlinear Phenom. 237(24), 3335–3368 (2008)Google Scholar
- 320.Van Heijster, P., Doelman, A., Kaper, T.J., Promislow, K.: Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst. 9, 292–332 (2010)Google Scholar
- 321.Veling, E.J.M.: The generalized incomplete Gamma function as sum over modified Bessel functions of the first kind. J. Comput. Appl. Math. 235, 4107–4116 (2011)Google Scholar
- 324.von Lommel, E.C.J.: Die Beugungserscheinungen einer kreisrunden Öffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet. Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15, 229–328 (1884–1886)Google Scholar
- 325.von Lommel, E.C.J.: Die Beugungserscheinungen geradlinig begrenzter Schirme. Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15, 529–664 (1884–1886)Google Scholar
- 328.Wang, P.Y.: Solutions of Some Certain Classes of Differential Equations by Means of Fractional Calculus. Ph.D. Dissertation, Department of Applied Mathematics, Chung Yuan Christian University Chung-Li, Taiwan (2006)Google Scholar
- 329.Wang, P.Y., Lin, S.D., Srivastava, H.M.: Remarks on a simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 51(1), 105–114 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 330.Wang, P.Y., Lin, S.D., Tu, S.T.: A survey of fractional-calculus approaches to the solutions of the Bessel differential equation of general order. Appl. Math. Comput. 187(1), 544–555 (2007)MathSciNetMATHGoogle Scholar
- 333.Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)MATHGoogle Scholar
- 334.Wilkins Jr., J.E.: Neumann series of Bessel functions. Trans. Am. Math. Soc. 64, 359–385 (1948)MathSciNetCrossRefMATHGoogle Scholar
- 335.Wilkins Jr., J.E.: Nicholson’s integral for \(J_n^2(z)+Y_n^2(z)\). Bull. Am. Math. Soc. 54, 232–234 (1948)Google Scholar
- 336.Wilkins Jr., J.E.: Neumann series of Bessel functions II. Trans. Am. Math. Soc. 69, 55–65 (1950)MathSciNetCrossRefMATHGoogle Scholar
- 337.Wilson, E.B., Hilfetry, M.M.: The distribution of chi-square. Proc. Natl. Acad. Sci. 17, 684–688 (1931)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2017