Neumann Series

  • Árpád Baricz
  • Dragana Jankov Maširević
  • Tibor K. Pogány
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2207)

Abstract

The goal of present chapter is to study in details the integral representations of the Neumann series (of the first and second type) of Bessel and modified Bessel functions of the first and second kind. In order to achieve our goal we use several methods: the Euler–Maclaurin summation technique, differential equation technique, fractional integration technique. Moreover, we present some interesting results on the coefficients of Neumann series, product of modified Bessel functions of the first and second kind and the cumulative distribution function of the non-central χ2-distribution.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)Google Scholar
  2. 2.
    Agrest, M.M., Maksimov, M.S.: Theory of Incomplete Cylindrical Functions and their Applications. Springer, New York (1971)Google Scholar
  3. 4.
    Al-Jarrah, A., Dempsey, K.M., Glasser, M.L.: Generalized series of Bessel functions. J. Comput. Appl. Math. 143, 1–8 (2002)Google Scholar
  4. 5.
    Al-Salam, W.A.: A generalized Turán expression for Bessel functions. Am. Math. Mon. 68(2), 146–149 (1961)Google Scholar
  5. 6.
    András, S., Baricz, Á., Sun, Y.: The generalized Marcum Q-function: an orthogonal polynomial approach. Acta Univ. Sapientiae Math. 3(1), 60–76 (2011)Google Scholar
  6. 7.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and it Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  7. 11.
    Bailey, W.N.: Generalized Hypergeometric Series. Cambridge Tract, vol. 32. Cambridge University Press, Cambridge (1935)Google Scholar
  8. 13.
    Baricz, Á.: On a product of modified Bessel functions. Proc. Am. Math. Soc. 137(1), 189–193 (2009)Google Scholar
  9. 14.
    Baricz, Á.: Bounds for modified Bessel functions of the first and second kind. Proc. Edin. Math. Soc. 53(3), 575–599 (2010)Google Scholar
  10. 15.
    Baricz, Á.: Generalized Bessel functions of the first kind. Lecture Notes in Mathematics, vol. 1994. Springer, Berlin (2010)Google Scholar
  11. 20.
    Baricz, Á., Pogány, T.K.: Properties of the product of modified Bessel functions. In: Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 809–820. Springer, Berlin (2014). In Honor of Hari M. SrivastavaGoogle Scholar
  12. 21.
    Baricz, Á., Pogány, T.K.: Turán determinants of Bessel functions. Forum Math. 26(1), 295–322 (2014)Google Scholar
  13. 22.
    Baricz, Á., Ponnusamy, S.: On Turán type inequalities for modified Bessel functions. Proc. Am. Math. Soc. 141(2), 523–532 (2013)Google Scholar
  14. 24.
    Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of Bessel functions I ν, Y ν and K ν. Proc. Am. Math. Soc. 140(3), 951–960 (2012)Google Scholar
  15. 25.
    Baricz, Á., Jankov, D., Pogány, T.K.: Neumann series of Bessel functions. Integral Transforms Spec. Funct. 23(7), 529–538 (2012)Google Scholar
  16. 26.
    Baricz, Á., Jankov, D., Pogány, T.K.: Turán type inequalities for Krätzel functions. J. Math. Anal. Appl. 388(2), 716–724 (2012)Google Scholar
  17. 43.
    Brychkov, Yu.A.: On some properties of the Marcum Q function. Integral Transforms Spec. Funct. 23(3), 177–182 (2012)Google Scholar
  18. 49.
    Chaudhry, M.A., Zubair, S.M.: Generalized incomplete gamma function with applications. J. Comput. Appl. Math. 55, 99–124 (1994)Google Scholar
  19. 51.
    Chessin, A.S.: Sur l’équation de Bessel avec second membre. Compt. Rend. 135, 678–679 (1902)Google Scholar
  20. 52.
    Chessin, A.S.: Sur une classe d’équations différentielles réductibles a l’équation de Bessel. Compt. Rend. 136, 1124–1126 (1903)Google Scholar
  21. 56.
    Cochran, J.A.: The monotonicity of modified Bessel functions with respect to their order. J. Math. Phys. 46, 220–222 (1967)Google Scholar
  22. 60.
    De Micheli, E.: Integral representation for Bessel’s functions of the first kind and Neumann series (2017). arXiv:1708.09715v1 [math.CA]Google Scholar
  23. 62.
    Delfino, F., Procopio, R., Rossi, M.: Evaluation of capacitance matrix of a finite-length multiconductor transmission line. IEE Proc.: Sci. Meas. Technol. 151, 347–353 (2004)Google Scholar
  24. 78.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York, Toronto, London (1953)Google Scholar
  25. 80.
    Fejzullahu, B.Xh.: Neumann series and Lommel functions of two variables. Integral Transforms Spec. Funct. 27(6), 443–453 (2016)Google Scholar
  26. 93.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, CA (2000)Google Scholar
  27. 94.
    Graham, R.L.: Application of the FKG inequality and its relatives. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 115–131. Springer, Berlin (1983)Google Scholar
  28. 95.
    Grandison, S., Penfold, R., Vanden-Broeck, J.M.: A rapid boundary integral equation technique for protein electrostatics. J. Comput. Phys. 224, 663–680 (2007)Google Scholar
  29. 96.
    Gröbner, W., Hofreiter, N.: Integraltafel: Zweiter Teil. Bestimmte Integrale. Springer, Wien (1973)Google Scholar
  30. 102.
    Hansen, E.R.: A Table of Series and Products. Prentice-Hall, Englewood Cliffs, NJ (1975)Google Scholar
  31. 103.
    Hantush, M.S., Jacob, C.E.: Non-steady radial flow in an infinite leaky aquifer. Trans. Am. Geophys. Union 36, 95–100 (1955)Google Scholar
  32. 107.
    Hasan, A.A.: Electrogravitational stability of oscillating streaming fluid cylinder. Phys. B. 406, 234–240 (2011)Google Scholar
  33. 113.
  34. 114.
  35. 116.
    http://functions.wolfram.com/07.20.07.0002.01 (2016). Accessed 31 Oct 2016
  36. 118.
  37. 123.
  38. 125.
    Ismail, M.E.H.: Complete monotonicity of modified Bessel functions. Proc. Am. Math. Soc. 108(2), 353–361 (1990)Google Scholar
  39. 134.
    Jankov, D., Pogány, T.K., Süli, E.: On the coefficients of Neumann series of Bessel functions. J. Math. Anal. Appl. 380(2), 628–631 (2011)Google Scholar
  40. 138.
    Jankov Maširević, D.: On new formulas for the cumulative distribution function of the noncentral chi-square distribution. Mediterr. J. Math. 14(2), Art 66, 13 pp. (2017)Google Scholar
  41. 139.
    Jankov Maširević, D., Pogány, T.K.: New summations of Neumann series of modified Bessel functions. J. Anal. 23, 47–57 (2015)Google Scholar
  42. 142.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2. Wiley, New York (1995)Google Scholar
  43. 143.
    Jones, A.L.: An extension of an inequality involving modified Bessel functions. J. Math. Phys. 47, 220–221 (1968)Google Scholar
  44. 147.
    Karamata, J.: Theory and Applications of Stieltjes integral. Srpska Akademija Nauka, Posebna izdanja CLIV, Matematički institut, Knjiga I, Beograd (1949) (in Serbian)Google Scholar
  45. 148.
    Karatsuba, E.A., Moretti, P.: Inversion time of large spins. J. Math. Phys. 46(4), 042101:1–7 (2005)Google Scholar
  46. 152.
    Klimek, S., McBride, M.: Global boundary conditions for a Dirac operator on the solid torus. J. Math. Phys. 52, Article 063518, 14 pp. (2011)Google Scholar
  47. 162.
    Kravchenko, V.V., Torba, S.M.: A Neumann series of Bessel functions representation for solutions of Sturm-Liouville equations (2016). arXiv:1612.08803v1 [math.CA]Google Scholar
  48. 163.
    Kravchenko, V.V., Torba, S.M., Castillo-Prez, R.: A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations. Appl. Anal. (2017). 10.1080/00036811.2017.1284313Google Scholar
  49. 164.
    Kravchenko, V.V., Navarro, L.J., Torba, S.M.: Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions. Appl. Math. Comput. 314, 173–192 (2017)Google Scholar
  50. 165.
    Laforgia, A.: Bounds for modified Bessel functions. J. Comput. Appl. Math. 34(3), 263–267 (1991)Google Scholar
  51. 173.
    Lin, S.D., Shyu, J.C., Nishimoto, K., Srivastava, H.M.: Explicit solutions of some general families of ordinary and partial differential equations associated with the Bessel equation by means of fractional calculus. J. Fract. Calc. 25, 33–45 (2004)Google Scholar
  52. 174.
    Lin, S.D., Ling, W.C., Nishimoto, K., Srivastava, H.M.: A simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 49(9–10), 1487–1498 (2005)Google Scholar
  53. 178.
    Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York-Toronto-London (1962)Google Scholar
  54. 181.
    Marcum, J.I.: A statistical theory of target detection by pulsed radar. IRE Trans. Inf. Theory 6, 59–267 (1960)Google Scholar
  55. 183.
    Martin, P.A.: Acoustic waves in slender axisymmetric tubes. J. Sound Vib. 286, 55–68 (2005)Google Scholar
  56. 184.
    Martin, P.A., Berger, J.R.: Waves in wood: free vibrations of a wooden pole. J. Mech. Phys. Solids 49, 1155–1178 (2001)Google Scholar
  57. 188.
    Maximon, L.C.: On the representation of indefinite integrals containing Bessel functions by simple Neumann series. Proc. Am. Math. Soc. 7(6), 1054–1062 (1956)Google Scholar
  58. 189.
    Mei, Z., Zhao, D., Gu, J.: Comparison of two approximate methods for hard-edged diffracted flat-topped light beams. Opt. Commun. 267, 58–64 (2006)Google Scholar
  59. 191.
    Meligy, A.S.: On Whittaker and Coulomb functions. J. Lond. Math. Soc. 37, 141–144 (1962)Google Scholar
  60. 203.
    Morales-Jimenez, D., Lopez-Martinez, F.J., Martos-Naya, E., Paris, J.F., Lozano, A.: Connections between the generalized Marcum Q-function and a class of hypergeometric functions. IEEE Trans. Inform. Theory 60(2), 1077–1082 (2014)Google Scholar
  61. 208.
    Nadon, M., Campbell, L.J.: An exact expression for transient forced internal gravity waves in a Boussinesq fluid. Wave Motion 44, 340–345 (2007)Google Scholar
  62. 209.
    Neumann, C.G.: Theorie der Besselschen Funktionen. B.G. Teubner, Leipzig (1867)Google Scholar
  63. 210.
    Newberger, B.S.: New sum rule for products of Bessel functions with application to plasma physics. J. Math. Phys. 23(7), 1278–1281 (1982)Google Scholar
  64. 223.
    Novomestky, F.: Asymptotic expression for the unit-step and dirac delta functions. SIAM J. Appl. Math. 27(4), 521–525 (1974)Google Scholar
  65. 224.
    Oberhettinger, F.: Tables of Bessel Transforms. Springer, New York (1972)Google Scholar
  66. 227.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. NIST and Cambrigde University Press, Cambridge (2010)Google Scholar
  67. 232.
    Patnaik, P.B.: The non-central χ 2- and the F-distributions and their applications. Biometrika 36, 202–232 (1949)Google Scholar
  68. 233.
    Pearson, E.S.: Note on an approximation to the distribution of noncentral χ 2. Biometrika 46, 364–364 (1959)Google Scholar
  69. 234.
    Penfold, R., Vanden-Broeck, J.M., Grandison, S.: Monotonicity of some modified Bessel function products. Integral Transforms Spec. Funct. 18, 139–144 (2007)Google Scholar
  70. 235.
    Perron, O.: Zur Theorie der Dirichletschen Reihen. J. Reine Angew. Math. 134, 95–143 (1908)Google Scholar
  71. 237.
    Phillips, R.S., Malin, H.: Bessel function approximations. Am. J. Math. 72, 407–418 (1950)Google Scholar
  72. 249.
    Pogány, T.K., Süli, E.: Integral representation for Neumann series of Bessel functions. Proc. Am. Math. Soc. 137(7), 2363–2368 (2009)Google Scholar
  73. 252.
    Pogány, T.K., Srivastava, H.M., Tomovski, ž.: Some families of Mathieu a–series and alternating Mathieu a-series. Appl. Math. Comput. 173(1), 69–108 (2006)Google Scholar
  74. 253.
    Pogány, T.K., Baricz, Á., Rudas, I.: Incomplete Krätzel function model of leaky aquifer and alike functions. In: Proceedings of the 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics (May 21–23), Timişoara, Romania, pp. 59–62 (2015)Google Scholar
  75. 257.
    Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 2. Special Functions. Gordon and Breach Science Publishers, New York (1986)Google Scholar
  76. 261.
    Radwan, A.E., Hasan, A.A.: Magneto hydrodynamic stability of self-gravitational fluid cylinder. Appl. Math. Model. 33, 2121–2131 (2009)Google Scholar
  77. 262.
    Radwan, A.E., Dimian, M.F., Hadhoda, M.K.: Magnetogravitational stability of a bounded gas-core fluid jet. Appl. Energy 83, 1265–1273 (2006)Google Scholar
  78. 267.
    Reudink, D.O.: On the signs of the ν-derivatives of the modified Bessel functions I ν(x) and K ν(x). J. Res. Natl. Bur. Stand. B72, 279–280 (1968)Google Scholar
  79. 268.
    Rice, S.O.: Mathematical analysis of random noise III. Bell Syst. Tech. J. 24, 46–156 (1945)Google Scholar
  80. 269.
    Robert, C.: Modified Bessel functions and their applications in probability and statistics. Stat. Probab. Lett. 9, 155–161 (1990)Google Scholar
  81. 270.
    Robinson, N.I.: An isotropic elastic medium containing a cylindrical borehole with a rigid plug. Int. J. Solids Struct. 39, 4889–4904 (2002)Google Scholar
  82. 272.
    Salem, M.A., Kamel, A.H., Osipov, A.V.: Electromagnetic fields in the presence of an infinite dielectric wedge. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462(2), 2503–2522 (2006)Google Scholar
  83. 274.
    Sankaran, M.: Approximations to the noncentral chi-square distribution. Biometrika 50, 199–204 (1963)Google Scholar
  84. 282.
    Siemon, P.: Über die Integrale einer nicht homogenen Differentialgleichung zweiter Ordnung. In: Programm der Luisienschuhle. Sechster Abschnitt. Differential- und Integralrechnung. Capitel 5. Gewöhnliche Differentialgleichungen, Berlin (1890)Google Scholar
  85. 290.
    Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd./Halsted Press [Wiley], Chichester/New York (1985)Google Scholar
  86. 309.
    Temme, N.M.: Asymptotic and numerical aspects of the noncentral chi-square distribution. Comput. Math. Appl. 25(5), 55–63 (1993)Google Scholar
  87. 311.
    Thiruvenkatachar, V.R., Nanjundiah, T.S.: Inequalities concerning Bessel functions and orthogonal polynomials. Proc. Indian Acad. Sci. Sect. A 33, 373–384 (1951)Google Scholar
  88. 318.
    Van Heijster, P., Sandstede, B.: Planar radial spots in a three-component FitzHugh-Nagumo system. J. Nonlinear Sci. 21, 705–745 (2011)Google Scholar
  89. 319.
    Van Heijster, P., Doelman, A., Kaper, T.J.: Pulse dynamics in a three-component system: stability and bifurcations. Phys. D. Nonlinear Phenom. 237(24), 3335–3368 (2008)Google Scholar
  90. 320.
    Van Heijster, P., Doelman, A., Kaper, T.J., Promislow, K.: Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst. 9, 292–332 (2010)Google Scholar
  91. 321.
    Veling, E.J.M.: The generalized incomplete Gamma function as sum over modified Bessel functions of the first kind. J. Comput. Appl. Math. 235, 4107–4116 (2011)Google Scholar
  92. 324.
    von Lommel, E.C.J.: Die Beugungserscheinungen einer kreisrunden Öffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet. Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15, 229–328 (1884–1886)Google Scholar
  93. 325.
    von Lommel, E.C.J.: Die Beugungserscheinungen geradlinig begrenzter Schirme. Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15, 529–664 (1884–1886)Google Scholar
  94. 328.
    Wang, P.Y.: Solutions of Some Certain Classes of Differential Equations by Means of Fractional Calculus. Ph.D. Dissertation, Department of Applied Mathematics, Chung Yuan Christian University Chung-Li, Taiwan (2006)Google Scholar
  95. 329.
    Wang, P.Y., Lin, S.D., Srivastava, H.M.: Remarks on a simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 51(1), 105–114 (2006)MathSciNetCrossRefMATHGoogle Scholar
  96. 330.
    Wang, P.Y., Lin, S.D., Tu, S.T.: A survey of fractional-calculus approaches to the solutions of the Bessel differential equation of general order. Appl. Math. Comput. 187(1), 544–555 (2007)MathSciNetMATHGoogle Scholar
  97. 333.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)MATHGoogle Scholar
  98. 334.
    Wilkins Jr., J.E.: Neumann series of Bessel functions. Trans. Am. Math. Soc. 64, 359–385 (1948)MathSciNetCrossRefMATHGoogle Scholar
  99. 335.
    Wilkins Jr., J.E.: Nicholson’s integral for \(J_n^2(z)+Y_n^2(z)\). Bull. Am. Math. Soc. 54, 232–234 (1948)Google Scholar
  100. 336.
    Wilkins Jr., J.E.: Neumann series of Bessel functions II. Trans. Am. Math. Soc. 69, 55–65 (1950)MathSciNetCrossRefMATHGoogle Scholar
  101. 337.
    Wilson, E.B., Hilfetry, M.M.: The distribution of chi-square. Proc. Natl. Acad. Sci. 17, 684–688 (1931)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Árpád Baricz
    • 1
    • 2
  • Dragana Jankov Maširević
    • 3
  • Tibor K. Pogány
    • 1
    • 4
  1. 1.John von Neumann Faculty of Informatics, Institute of Applied MathematicsÓbuda UniversityBudapestHungary
  2. 2.Department of EconomicsBabeş–Bolyai UniversityCluj–NapocaRomania
  3. 3.Department of MathematicsJosip Juraj Strossmayer University of OsijekOsijekCroatia
  4. 4.Faculty of Maritime StudiesUniversity of RijekaRijekaCroatia

Personalised recommendations