Advertisement

Solutions of Hard Knapsack Problems Using Extreme Pruning

  • E. Daravigkas
  • K. A. DraziotisEmail author
  • A. Papadopoulou
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 131)

Abstract

In the present study we provide a review for the state-of-the-art attacks to the knapsack problem. We implemented the Schnorr-Shevchenko lattice attack, and we applied the new reduction strategy, BKZ 2.0. Finally, we compared the two implementations.

Keywords

Knapsack problem Subset sum problem Lattice LLL reduction BKZ reduction Extreme pruning 

References

  1. 1.
    Ajtai, M.: The shortest vector problem in L 2 is NP-hard for randomized reduction. In: Proceedings of the 30th ACM Symposium on Theory of Computing (1998)Google Scholar
  2. 2.
    Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithm for hard knapsacks. In: Eurocrypt 2011. Lecture Notes in Computer Science, vol. 6632 (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Asiacrypt. Lecture Notes in Computer Science, vol. 7073. Springer, Berlin (2011)Google Scholar
  4. 4.
    Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern, J.: Improved low-density subset sum algorithms. Comput. Complex. 2, 111–128 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Freize, A.M.: On the Lagarias-Odlyzko algorithm for the subset sum problem. SIAM J. Comput. 15(2), 536–539 (1986)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge (2012)Google Scholar
  7. 7.
    Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. Lecture Notes in Computer Science, vol. 4965 (2008)Google Scholar
  8. 8.
    Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Eurocrypt 2008. Advances in Cryptology. Springer, Berlin (2008)Google Scholar
  9. 9.
    Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Eurocrypt 2010. Advances in Cryptology. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)Google Scholar
  11. 11.
    Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Eurocrypt 2010. Lecture Notes in Computer Science. vol. 6110 (2010)CrossRefGoogle Scholar
  12. 12.
    Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall/CRC Cryptography and Network Security. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  13. 13.
    Lagarias, J., Odlyzko, A.: Solving low-density attacks to low-weight knapsacks. In: Advance in Cryptology-ASIACRYPT 2005. Lecture Notes in Computer Science, vol. 3788 (2005)Google Scholar
  14. 14.
    Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)Google Scholar
  15. 15.
    Micciancio, D., Goldwasser, S.: Complexity of Lattices : A Cryptographic Perspective. Springer, Berlin (2003)Google Scholar
  16. 16.
    Nguyen, P.Q., Stern, J.: Adapting density attacks to low-weight knapsacks. In: Advances in Cryptology - ASIACRYPT 2005. Lecture Notes in Computer Science, vol. 3788 (2005)Google Scholar
  17. 17.
    Nguyen, P.Q., Stehl\(\acute {\text{e}}\), D.: An LLL algorithm with quadratic complexity. SIAM J. Comput. 39(3), 874–903 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum public-key cryptosystems. In: On Proceedings of Crypto 2000 (2000)Google Scholar
  19. 19.
    Radziszowski, S., Kreher, D.: Solving subset sum problems with the L 3 algorithm. J. Comb. Math. Comb. Comput. 3, 49–63 (1988)Google Scholar
  20. 20.
    Schnorr, C.-P.: A more efficient algorithm for lattice basis reduction algorithms. J. Algorithms 9, 47–62 (1987)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schnorr, C.-P., Shevchenko, T.: Solving Subset Sum Problems of Density close to 1 by “randomized” BKZ-reduction. Cryptology. ePrint Archive: Report 2012/620Google Scholar
  23. 23.
    Shoup, V.: NTL: A library for doing number theory. http://www.shoup.net/ntl/
  24. 24.
    Stein, W.A., et al. Sage Mathematics Software. The Sage Development Team (2012). http://www.sagemath.org
  25. 25.
    The FPLLL development team, fplll, a lattice reduction library (2016). Available at https://github.com/fplll/fplll

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • E. Daravigkas
    • 1
  • K. A. Draziotis
    • 1
    Email author
  • A. Papadopoulou
    • 2
  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations