Advertisement

Discrete Mathematics for Statistical and Probability Problems

  • Christos P. Kitsos
  • Thomas L. Toulias
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 131)

Abstract

This paper offers a compact presentation of the solid involvement of Discrete Mathematics in various fields of Statistics and Probability Theory. As far as the discrete methodologies in Statistics are concerned, our interest is focused on the foundations and applications of the Experimental Design Theory. The set-theoretic approach of the foundations of Probability Theory is also presented, while the notions of concepts and fuzzy logic are formulated and discussed.

References

  1. 1.
    Box, G.E.P.: Evolutionary operation: a method of increasing industrial productivity. J. R. Soc. Ser. B 26, 211–252 (1957)Google Scholar
  2. 2.
    Box, I.F.: R.A. Fisher: The Life of a Scientist. Wiley, New York (1978)Google Scholar
  3. 3.
    Cochran, W.C., Box, G.M.: Experimental Design. Wiley, New York (1957)Google Scholar
  4. 4.
    Coxeter, H.S.M.: Projective Geometry. Springer, New York (1987)CrossRefGoogle Scholar
  5. 5.
    Fisher, R.A.: The Design of Experiments. Oliver and Boy, London (1947)Google Scholar
  6. 6.
    Ford, I., Kitsos, C.P., Titterington, D.M.: Recent advances in nonlinear experimental design. Technometrics 31, 49–60 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fraser, D.A.S.: Structural Inference. Wiley, New York (1968)Google Scholar
  8. 8.
    Hicks, C.R.: Fundumental Concepts in the Design of Experiments. Holt, Rinehart and Winston, New York (1973)Google Scholar
  9. 9.
    Hunter, J.: Numder Theory. Oliver and Boyd, Clasgow (1964)Google Scholar
  10. 10.
    Kappos, D.: Probability Algebra and Stochastic Spaces. Academic, New York, London (1969)CrossRefGoogle Scholar
  11. 11.
    Kempthorne, O.: The Design and Analysis of Experiments. Wiley, New York (1952)Google Scholar
  12. 12.
    Kitsos, C.P.: Design and Inference for Nonlinear Problems. PhD Thesis, University of Glasgow (1986)Google Scholar
  13. 13.
    Kitsos, C.P.: Fully sequential procedures in nonlinear design problems. Comput. Stat. Data Anal. 8, 13–19 (1989)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kitsos, C.P.: Quasi-sequential procedures for the calibration problem. In: Dodge, Y., Whittaker, J. (eds.) COMPSTAT 92 Proceedings, vol. 2, pp. 227–231 (1992)CrossRefGoogle Scholar
  15. 15.
    Kitsos, C.P.: Statistical Analysis of Experimental Design (in Greek). New Technologies, Athens (1994)Google Scholar
  16. 16.
    Kitsos, C.P.: The SPRT for the Poisson process. In: e-Proceedings of the XII-th Applied Stochastic Models and Data Analysis (ASMDA 2007), Chania, Crete, 29 May–1 June 2007Google Scholar
  17. 17.
    Kitsos, C.P., Sotiropoulos, M.: Distance methods for bioassays. Biometrie und Medizinische Informatik Greifswalder Seminarberichte 15, 55–74 (2009)Google Scholar
  18. 18.
    Kitsos, C.P., Toulias, T.L.: On the information matrix of the truncated cosinor model. Br. J. Math. Comput. Sci. 4(6), 759–773 (2014)CrossRefGoogle Scholar
  19. 19.
    Kitsos, C.P., Toulias, T.L.: Hellinger distance between generalized normal distributions. Br. J. Math. Comput. Sci. 21(2), 1–16 (2017)CrossRefGoogle Scholar
  20. 20.
    Kitsos, C.P., Titterington, D.M., Torsney, B.: An optimal design problem in rhythmometry. Biometrics 44, 657–671 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Klir, G., Yan, B.: Fuzzy Logic. Prentice Hall, New Jersey (1995)Google Scholar
  22. 22.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechung. Springer, Berlin (1933)CrossRefGoogle Scholar
  23. 23.
    Mead, R.: The Design of Experiments. Cambridge University Press, Cambridge (1988)Google Scholar
  24. 24.
    Montgomery, D.G.: Design and Analysis of Experiments. Wiley, New York (1991)zbMATHGoogle Scholar
  25. 25.
    Myers, R.H.: Response Surface Methodology. Allyn and Bacon Inc., Boston (1971)Google Scholar
  26. 26.
    Scheffe, H.: The Analysis of Variance. Wiley, New York (1959)zbMATHGoogle Scholar
  27. 27.
    Silvey, S.D.: Optimal Design - An Introduction to the Theory for Parameter Estimation. Springer Netherlands, Dordrecht (1980)zbMATHGoogle Scholar
  28. 28.
    Toulias, T.L., Kitsos, C.P.: Fitting the Michaelis-Menten model. J. Comput. Appl. Math. 296, 303–319 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wolfe, M.A.: Interval mathematics, algebraic equations and optimization. J. Comput. Appl. Math. 124, 263–280 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yates, F.: Design and Analysis of Factorial Experiment. Imperial Bureau of Soil Sciences, London (1937)Google Scholar
  31. 31.
    Zandeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christos P. Kitsos
    • 1
  • Thomas L. Toulias
    • 1
  1. 1.Technological Educational Institute of AthensAthensGreece

Personalised recommendations