Toxicological Studies and Regulatory Aspects of Nanobased Foods

  • Asaithambi Kalaiselvi
  • Ravichandran Rathna
  • Ekambaram NakkeeranEmail author


Nanotechnology is a major breakthrough technology that expanded its wings in several dimensions of life. Nanoscale materials found to have a wide range of applications in food sectors by enhancing the palatability, flavor, taste, micronutrient protection and shelf life of the food products. The market of nano-based food products are increasing at an immense rate but uncertainty on safety and risk is also emerging. The current regulatory framework for nano-based food products developed by Europe, United States, and Asia are eager to capture nanotechnology food products. In this chapter, toxicity studies of nanomaterials and knowledge gap between nanoscience and nanotechnology in the food sector are discussed. An overview of nanostructures, potential risk and future perspective of nanomaterials in food sciences is also discussed.


Nanomaterials Risk assessment Toxicity Food stores Nanoparticles 


  1. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36CrossRefGoogle Scholar
  2. Arisseto AP, Toledo MCDF (2008) Preliminary estimate of acrylamide intake in Brazil [estimativa Preliminar Da Ingestão De Acrilamida No Brasil]. Revista Brasileira de ToxicologiaGoogle Scholar
  3. Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:1CrossRefGoogle Scholar
  4. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62PubMedCrossRefGoogle Scholar
  5. Azeredo HM, Miranda KW, Rosa MF, Nascimento DM, de Moura MR (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-food. Sci Technol 46:294–297Google Scholar
  6. Baek M, Chung HE, Yu J, Lee JA, Kim TH, JM O, Lee WJ, Paek SM, Lee JK, Jeong J, Choy JH (2012) Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–3097PubMedPubMedCentralGoogle Scholar
  7. Bélafi-Bakó K, Koroknai B (2006) Enhanced water flux in fruit juice concentration: coupled operation of osmotic evaporation and membrane distillation. J Membr Sci 269:187–193CrossRefGoogle Scholar
  8. Beumer K, Bhattacharya S (2013) Emerging technologies in India: developments, debates and silences about nanotechnology. Sci Public Policy 40:628–643CrossRefGoogle Scholar
  9. Beyer FL, Beck Tan NC, Dasgupta A, Galvin ME (2002) Polymer− layered silicate nanocomposites from model surfactants. Chem Mater 14:2983–2988CrossRefGoogle Scholar
  10. Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bhattacharya S, Pushkaran JA, Shilpa Bhati M (2012) Knowledge creation and innovation in nanotechnology: contemporary and emerging scenario in India. CSIR- NISTADSStrategy Paper on Nanotechnology. Available form:
  12. Bhushan B (2015) Governance, policy, and legislation of nanotechnology: a perspective. Microsyst Technol 21:1137–1155CrossRefGoogle Scholar
  13. Bouwmeester H, Dekkers S, Noordam MY, Hagens W, Bulder AS, de Heer PM, ten Voord SEC G, Wijnhoven S, Sips A (2007) Health impact of nanotechnologies in food production (no. 2007.014). RIKILTGoogle Scholar
  14. Bouwmeester H, Marvin HJP (2010) Potential risks of nanofood to consumers. In: Chaudhry QL, Castle L, Watkins R (ed) Nanotechnologies in Food. Royal Society of Chemistry Publishers, Cambridge, UK, pp 134–140Google Scholar
  15. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73:137–150PubMedCrossRefGoogle Scholar
  16. Brown JS, Gordon T, Price O, Asgharian B (2013) Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol 10:12PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80:R910PubMedCrossRefGoogle Scholar
  18. Buzby JC (2010) Nanotechnology for food applications: more questions than answers. J Consum Aff 44:528–545CrossRefGoogle Scholar
  19. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  20. Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603CrossRefGoogle Scholar
  21. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258CrossRefGoogle Scholar
  22. Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S (2017) Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol 97:616–624PubMedCrossRefGoogle Scholar
  23. Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9PubMedPubMedCentralCrossRefGoogle Scholar
  24. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170PubMedPubMedCentralCrossRefGoogle Scholar
  25. Clift MJ, Varet J, Hankin SM, Brownlee B, Davidson AM, Brandenberger C, Stone V (2011) Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology 5:664–674PubMedCrossRefGoogle Scholar
  26. Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem. Front Chem 3:48PubMedPubMedCentralCrossRefGoogle Scholar
  27. Coupland JN, Hayes JE (2014) Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm Res 31:2921–2939PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333CrossRefGoogle Scholar
  29. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133CrossRefGoogle Scholar
  30. Diab R, Jaafar-Maalej C, Fessi H, Maincent P (2012) Engineered nanoparticulate drug delivery systems: the next frontier for oral administration. AAPS J 14:688–702PubMedPubMedCentralCrossRefGoogle Scholar
  31. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dressler F, Kargl F (2012) Towards security in nano-communication: challenges and opportunities. Nano Commun Networks 3:151–160CrossRefGoogle Scholar
  33. Duncan TV (2011) The communication challenges presented by nanofoods. Nat Nanotechnol 6(11):683PubMedCrossRefGoogle Scholar
  34. Elango, G., Kumaran, S. M., Kumar, S. S., Muthuraja, S., & Roopan, S. M. (2015). Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta A Mol Biomol Spectrosc 145:176–180CrossRefGoogle Scholar
  35. Elango G, Mohana Roopan S, Abdullah Al-Dhabi N, Arasu MV, Irukatla Damodharan K, Elumalai K (2016) Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest. Artif Cells Nanomed Biotechnol 45(8):1581–1587PubMedCrossRefGoogle Scholar
  36. Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol 155:34–38CrossRefGoogle Scholar
  37. Estelrich J, Quesada-Pérez M, Forcada J, Callejas-Fernández J (2014) Introductory aspects of soft nanoparticles. RSC Nanosci Nanotechnol 34:1–18 Google Scholar
  38. Fahim HA, Khairalla AS, El-Gendy AO (2016) Nanotechnology: a valuable strategy to improve bacteriocin formulations. Front Microbiol 7:1385PubMedPubMedCentralCrossRefGoogle Scholar
  39. Filon FL, Mauro M, Adami G, Bovenzi M, Crosera M (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72:310–322CrossRefGoogle Scholar
  40. Forbe T, García M, Gonzalez E (2011) Potencial risks of nanoparticles. Food Sci Technol., (Campinas) 31:835–842CrossRefGoogle Scholar
  41. García M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol., (Campinas) 30:573–581CrossRefGoogle Scholar
  42. Garti N, Spernath A, Aserin A, Lutz R (2005) Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter 1:206–218CrossRefGoogle Scholar
  43. Glenn JC (2006) Nanotechnology: future military environmental health considerations. Technol Forecast Soc Change 73(2):128–137CrossRefGoogle Scholar
  44. Grobe A, Renn O, Jaeger A (2008) Risk governance of nanotechnology applications in food and cosmetics. International Risk Governance Council (IRGC) Available from: Accessed April 29 2017Google Scholar
  45. Gu YS, Decker AE, McClements DJ (2005) Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, ι-carrageenan and gelatin. Langmuir 21:5752–5760PubMedCrossRefGoogle Scholar
  46. Guo WK (2011) Green nanotechnology of trends in future energy. Recent Pat Nanotechnol 5:76–88PubMedCrossRefGoogle Scholar
  47. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hardick O, Dods S, Stevens B, Bracewell DG (2015) Nanofiber adsorbents for high productivity continuous downstream processing. J Biotechnol 213:74–82PubMedCrossRefGoogle Scholar
  49. He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24:671–681PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hemalatha K, Madhumitha G (2015) Eco-friendly synthesis of palladium nanoparticles, environmental toxicity assessment and its catalytic application in Suzuki Miyaura coupling. Research J Pharm and Tech 8(12):1691–1700CrossRefGoogle Scholar
  51. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles–known and unknown health risks. J. NanoBiotechnology 2:12CrossRefGoogle Scholar
  52. Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electron Physician 8:2531PubMedPubMedCentralCrossRefGoogle Scholar
  53. House Of Lords (2010) Science and technology committee, 1st report of session 2009–10, Nanotechnologies and food, volume I: report, HL paper 22–I; volume II: evidence, HL paper 22–II, Published by the Authority of the House of Lords London: The Stationery Office Limited. Available from:
  54. Hrib J, Sirc J, Hobzova R, Hampejsova Z, Bosakova Z, Munzarova M, Michalek J (2015) Nanofibers for drug delivery–incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J Nanotechnol 6:1939–1945PubMedPubMedCentralCrossRefGoogle Scholar
  55. Huang JY, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45(2):187–199CrossRefGoogle Scholar
  56. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. Biotech 5:123–127Google Scholar
  57. Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7:1123–1128PubMedCrossRefGoogle Scholar
  58. Jani P, Halbert GW, LANGRIDGE J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826PubMedCrossRefGoogle Scholar
  59. Jia H (2011) Enzyme-carrying electrospun nanofibers. In: Wang P (ed) Nanoscale biocatalysis (Methods and Protocols). Humana Press, New York, NY, pp 205–212CrossRefGoogle Scholar
  60. Joung HJ, Choi MJ, Kim JT, Park SH, Park HJ, Shin GH (2016) Development of food-grade curcumin Nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J Food Sci 81(3):N745–N753PubMedCrossRefGoogle Scholar
  61. Jumahat A, Soutis C, Abdullah SA, Kasolang S (2012) Tensile properties of nanosilica/epoxy nanocomposites. Procedia Eng 41:1634–1640CrossRefGoogle Scholar
  62. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona Squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 90:173–176CrossRefGoogle Scholar
  63. Kumar A, Forbes B, Mudway I, Bicer EM, Dailey LA (2015) What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines?. Nanomed 10(3):343–345PubMedCrossRefGoogle Scholar
  64. Kumar DD, Mann B, Pothuraju R, Sharma R, Bajaj R (2016) Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream. Food Funct 7:417–424PubMedCrossRefGoogle Scholar
  65. Kuznesof PM, Rao MW (2006). Titanium Dioxide-Chemical and Technical Assessment. JECFA, Rome, Italy 1:1–8Google Scholar
  66. Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H (2017) Biokinetics of nanomaterials: the role of biopersistence. NanoImpact 6:69–80PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lee MJE, Veiseh O, Bhattarai N, Sun C, Hansen SJ, Ditzler S, Knoblaugh S, Lee D, Ellenbogen R, Zhang M, Olson JM (2010) Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS One 5:e9536PubMedPubMedCentralCrossRefGoogle Scholar
  68. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163PubMedCrossRefGoogle Scholar
  69. Liu JF, Skoczylas F, Liu J (2014) Experimental research on water retention and gas permeability of compacted bentonite/sand mixtures. Soils Found 54:1027–1038CrossRefGoogle Scholar
  70. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lopes CM, Fernandes JR, Martins-Lopes P (2013) Application of nanotechnology in the agro-food sector. Food Technol Biotechnol 51:183Google Scholar
  72. Madhumitha G, Elango G, Roopan SM (2016) Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 100(2):571–581PubMedCrossRefGoogle Scholar
  73. Majeed K, Jawaid M, Hassan A, Bakar AA, Khalil HA, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410CrossRefGoogle Scholar
  74. Martirosyan A, Schneider YJ (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750PubMedPubMedCentralCrossRefGoogle Scholar
  75. Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–153CrossRefGoogle Scholar
  76. McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606PubMedCrossRefGoogle Scholar
  77. Mirhosseini H, Tan CP, Taherian AR, Boo HC (2009) Modeling the physicochemical properties of orange beverage emulsion as function of main emulsion components using response surface methodology. Carbohydr Polym 75:512–520CrossRefGoogle Scholar
  78. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327PubMedCrossRefGoogle Scholar
  79. Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB (2010) Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 80:1833–1843PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nakagawa K (2014) Nano-and microencapsulation of flavor in food systems. In: Kwak H-S (ed) Nano-and microencapsulation for foods. Wiley, London, pp 249–271CrossRefGoogle Scholar
  81. Nazir MS, Kassim MHM, Mohapatra L, Gilani MA, Raza MR, Majeed K (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Jawaid M, Qaiss A, Bouhfid R (eds) Nanoclay Reinforced Polymer Composites, Engineering Materials. Springer, Singapore, pp 35–55CrossRefGoogle Scholar
  82. Noonan GO, Whelton AJ, Carlander D, Duncan TV (2014) Measurement methods to evaluate engineered nanomaterial release from food contact materials. Compr Rev Food Sci Food Saf 13:679–692CrossRefGoogle Scholar
  83. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  84. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303CrossRefGoogle Scholar
  85. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102PubMedCrossRefGoogle Scholar
  86. Özer EA, Özcan M, Didin M (2014) Nanotechnology in food and agriculture industry. In: Malik A, Erginkaya Z, Ahmad S, Erten H (eds) Food processing: strategies for quality assessment. Springer, New York, pp 477–497Google Scholar
  87. Pardeshi P, Nawale AB, Mathe VL, Lahir YK, Dongre PM (2014) Effects of zinc oxide nanoparticles on the hepatic tissue of chicken embryo: a histopathological approach. Bio Nano Front 2:176–180Google Scholar
  88. Patel AR, Velikov KP (2014) Zein as a source of functional colloidal nano-and microstructures. Curr Opin Colloid Interface Sci 19:450–458CrossRefGoogle Scholar
  89. Pathakoti K, Manubolu M, Hwang HM (2017). Nanostructures: current uses and future applications in food science. J Food Drug AnalGoogle Scholar
  90. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  91. Pawar A, Bothiraja C, Shaikh K, Mali A (2015) An insight into cochleates, a potential drug delivery system. RSC Adv 5:81188–81202CrossRefGoogle Scholar
  92. Plunkett’s Food Industry Market Research (2016) Food, beverage and grocery overview Food, beverage and grocery overview. Accessed 8 May 2017
  93. Politis M, Pilinis C, Lekkas TD (2008) Ultrafine particles (UFP) and health effects. Dangerous. Like no other PM? Review and analysis. Global NEST J 10(3):439–452Google Scholar
  94. Posocco B, Dreussi E, De Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G, Dapas B (2015) Polysaccharides for the delivery of antitumor drugs. Materials 8:2569–2615PubMedCentralCrossRefGoogle Scholar
  95. Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int 2015:1CrossRefGoogle Scholar
  96. Rao J, McClements DJ (2011) Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem 59(9):5026–5035PubMedCrossRefGoogle Scholar
  97. Rashidi L, Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51(8):723–730PubMedCrossRefGoogle Scholar
  98. Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):P72–P96CrossRefGoogle Scholar
  99. Ray PC, Yu H, PP F (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C 27(1):1–35CrossRefGoogle Scholar
  100. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2(1):8–21CrossRefGoogle Scholar
  101. Riviere JE, Monteiro-Riviere NA (eds) (2005) Dermal absorption models in toxicology and pharmacology. CRC Press, Boca RatonGoogle Scholar
  102. Roco MC (2007) National nanotechnology initiative-past, present, future. In: Goddard WA et al (eds) Handbook on nanoscience, engineering and technology, 2nd edn. Taylor and Francis, Oxford, pp 3.1–3.26Google Scholar
  103. Roy R, Roy RA, Roy DM (1986) Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Mater Lett 4(8–9):323–328CrossRefGoogle Scholar
  104. Roopan SM, Surendra TV, Elango G, Kumar SH (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98(12):5289–5300PubMedCrossRefGoogle Scholar
  105. Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium Sativum and cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8(10):6379–6390PubMedCrossRefGoogle Scholar
  106. Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Puntes V (2015) The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnol 13(1):1CrossRefGoogle Scholar
  107. Sekhon BS (2010) Food nanotechnology–an overview. Nanotechnol Sci Application 3(1):1–15Google Scholar
  108. Shin SW, Song IH, Um SH (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomater 5(3):1351–1365CrossRefGoogle Scholar
  109. Silva HD, Cerqueira MA, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5(3):854–867CrossRefGoogle Scholar
  110. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223PubMedPubMedCentralCrossRefGoogle Scholar
  111. Singh PK, Jairath G, Ahlawat SS (2016) Nanotechnology: a future tool to improve quality and safety in meat industry. J Food Sci Technol 53(4):1739–1749PubMedCrossRefGoogle Scholar
  112. Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8(1):36PubMedPubMedCentralCrossRefGoogle Scholar
  113. Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28(5):2727–2735PubMedCrossRefGoogle Scholar
  114. Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226Google Scholar
  115. Taylor U, Barchanski A, Garrels W, Klein S, Kues W, Barcikowski S, Rath D (2012) Toxicity of gold nanoparticles on somatic and reproductive cells. In: Nano-biotechnology for biomedical and diagnostic research. Springer, Netherlands, pp 125–133CrossRefGoogle Scholar
  116. Thomas K, Aguar P, Kawasaki H, Morris J, Nakanishi J, Savage N (2006) Research strategies for safety evaluation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92(1):23–32PubMedCrossRefGoogle Scholar
  117. Thompson KL, Armes SP, Howse JR, Ebbens S, Ahmad I, Zaidi JH, Burdis JA (2010) Covalently cross-linked colloidosomes. Macromolecules 43(24):10466–10474CrossRefGoogle Scholar
  118. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1(1):15PubMedPubMedCentralCrossRefGoogle Scholar
  119. Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9(05):455Google Scholar
  120. Viswanath B, Kim S (2016) Influence of Nanotoxicity on human health and environment: the alternative strategies. Rev Environ Contam Toxicol 242:61–104Google Scholar
  121. Wakefield G, Green M, Lipscomb S, Flutter B (2004) Modified titania nanomaterials for sunscreen applications–reducing free radical generation and DNA damage. Mater Sci Technol 20(8):985–988CrossRefGoogle Scholar
  122. Watkins R, Wu L, Zhang C, Davis RM, Xu B (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055PubMedPubMedCentralGoogle Scholar
  123. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116CrossRefGoogle Scholar
  124. Wyser Y, Adams M, Avella M, Carlander D, Garcia L, Pieper G, Rennen M, Schuermans J, Weiss J (2016) Outlook and challenges of nanotechnologies for food packaging. Packag Technol Sci 29(12):615–648CrossRefGoogle Scholar
  125. Yang CC (2007) Synthesis and characterization of the cross-linked PVA/TiO 2 composite polymer membrane for alkaline DMFC. J Membr Sci 288(1):51–60CrossRefGoogle Scholar
  126. Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Yun SH (2016) Nanotechnology in textiles. ACS Nano 10(3):3042–3068PubMedCrossRefGoogle Scholar
  127. Yin LJ, Chu BS, Kobayashi I, Nakajima M (2009) Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocoll 23(6):1617–1622CrossRefGoogle Scholar
  128. Yu M, Zheng J (2015) Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9(7):6655–6674PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WC (2016) Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348PubMedCrossRefGoogle Scholar
  130. Zhao B, Sun L, Zhang W, Wang Y, Zhu J, Zhu X, Yang L, Li C, Zhang Z, Zhang Y (2014) Secretion of intestinal goblet cells: a novel excretion pathway of nanoparticles. Nanomedicine: NBM 10(4):839–849CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Asaithambi Kalaiselvi
    • 1
  • Ravichandran Rathna
    • 1
  • Ekambaram Nakkeeran
    • 1
    Email author
  1. 1.Research Laboratory, Department of BiotechnologySri Venkateswara College of Engineering (Autonomous)Sriperumbudur TKIndia

Personalised recommendations