Imaging Anatomy: Magnetic Resonance Imaging, Computed Tomography, Positron Emission Tomography and Other Novel Imaging Techniques

  • Franz KainbergerEmail author
  • Lena Hirtler
  • Hannes Platzgummer
  • Florian Huber
  • Janina Patsch
  • Claudia Weidekamm


New concepts of the cross-sectional imaging anatomy have to be considered in the investigation and interpretation of arthritis of the hand. With high-resolution techniques and dedicated post-processing options, a precise location of synovitis, chondropathy, osteitis and crystal depositions is possible with the potential to specify the patterns of arthritis and to perform “virtual biopsies”. The autoimmune reaction starts in the synovium and subsynovium at sites of predilection and then involves the capsular ligaments, the synovium, the cartilage and the subchondral bone. Thus, characteristic patterns of ligament insufficiency, which influence the kinetic chains of grip movements, of distribution within synovial spaces and of bone destruction, can be described. For the latter, the anatomic concepts of pseudoerosions, the osteocartilaginous unit and the calcified lamella are helpful in image interpretation. Within these models, established theories (bare area concept, subchondral bordering lamella, enthesis concept and others) are integrated.


Computed tomography (CT) Magnetic resonance imaging (MRI) High-resolution peripheral quantitative computed tomography (HRpqCT) Arthritis Wrist Finger joints Anatomy Ulnar drift Carpal instability Erosion Joint space narrowing Kinetic chains Synovitis 


  1. 1.
    Johnson AJ, Chen MY, Zapadka ME, Lyders EM, Littenberg B. Radiology report clarity: a cohort study of structured reporting compared with conventional dictation. J Am Coll Radiol. 2010;7:501–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Wick M, Peloschek P, Bogl K, Graninger W, Smolen JS, Kainberger F. The “X-ray Rheuma coach” software: a novel tool for enhancing the efficacy and accelerating radiological quantification in rheumatoid arthritis. Ann Rheum Dis. 2003;62:579–82.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Woodworth TG, Morgacheva O, Pimienta OL, Troum OM, Ranganath VK, Furst DE. Examining the validity of the rheumatoid arthritis magnetic resonance imaging score according to the OMERACT filter-a systematic literature review. Rheumatology (Oxford). 2017;56:1177–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Ejbjerg B, Narvestad E, Rostrup E, Szkudlarek M, Jacobsen S, Thomsen HS, Ostergaard M. Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis Rheum. 2004;50:1097–106.CrossRefGoogle Scholar
  5. 5.
    Palosaari K, Vuotila J, Soini I, Kaarela K, Kautiainen H, Hakala M. Small bone lesions resembling erosions can frequently be found in bilateral wrist MRI of healthy individuals. Scand J Rheumatol. 2009;38:450–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Partik B, Rand T, Pretterklieber ML, Voracek M, Hoermann M, Helbich TH. Patterns of gadopentetate-enhanced MR imaging of radiocarpal joints of healthy subjects. AJR Am J Roentgenol. 2002;179:193–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Robertson PL, Page PJ, McColl GJ. Inflammatory arthritis-like and other MR findings in wrists of asymptomatic subjects. Skelet Radiol. 2006;35:754–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Olech E, Crues JV 3rd, Yocum DE, Merrill JT. Bone marrow edema is the most specific finding for rheumatoid arthritis (RA) on noncontrast magnetic resonance imaging of the hands and wrists: a comparison of patients with RA and healthy controls. J Rheumatol. 2010;37:265–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Parodi M, Silvestri E, Garlaschi G, Cimmino MA. How normal are the hands of normal controls? A study with dedicated magnetic resonance imaging. Clin Exp Rheumatol. 2006;24:134–41.PubMedGoogle Scholar
  10. 10.
    Pierre-Jerome C, Bekkelund SI, Mellgren SI, Torbergsen T, Husby G, Nordstrom R. The rheumatoid wrist: bilateral MR analysis of the distribution of rheumatoid lesions in axial plan in a female population. Clin Rheumatol. 1997;16:80–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Tan AL, Tanner SF, Conaghan PG, Radjenovic A, O’Connor P, Brown AK, Emery P, McGonagle D. Role of metacarpophalangeal joint anatomic factors in the distribution of synovitis and bone erosion in early rheumatoid arthritis. Arthritis Rheum. 2003;48:1214–22.CrossRefGoogle Scholar
  12. 12.
    Frija G. Quality and safety in radiology: a symbiotic relationship. Health Manage Forum. 2015;15.Google Scholar
  13. 13.
    Navalho M, Resende C, Rodrigues AM, Ramos F, Gaspar A, Pereira da Silva JA, Fonseca JE, Campos J, Canhão H. Bilateral MR imaging of the hand and wrist in early and very early inflammatory arthritis: tenosynovitis is associated with progression to rheumatoid arthritis. Radiology. 2012;264:823–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Friedrich KM, Chang G, Vieira RL, Wang L, Wiggins GC, Schweitzer ME, Regatte RR. In vivo 7.0-tesla magnetic resonance imaging of the wrist and hand: technical aspects and applications. Semin Musculoskelet Radiol. 2009;13:74–84.CrossRefGoogle Scholar
  15. 15.
    Resnick D. Target area approach to articular disorders. A synopsis. In: Resnick D, Kransdorf M, editors. Bone and joint imaging, vol. 1. Philadelphia: Elsevier Sounders; 2005. p. 324–51.Google Scholar
  16. 16.
    Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture Ann N Y Acad Sci. 2011;1240:77–87.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, Schäfer O, Helwig P, Kotter E, Langer M, Baumann T. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions--feasibility study. Radiology. 2010;256:617–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Aeberli D, Eser P, Bonel H, Widmer J, Caliezi G, Varisco PA, Möller B, Villiger PM. Reduced trabecular bone mineral density and cortical thickness accompanied by increased outer bone circumference in metacarpal bone of rheumatoid arthritis patients: a cross-sectional study. Arthritis Res Ther. 2010;12:R119.CrossRefGoogle Scholar
  19. 19.
    Fouque-Aubert A, Boutroy S, Marotte H, Vilayphiou N, Bacchetta J, Miossec P, Delmas PD, Chapurlat RD. Assessment of hand bone loss in rheumatoid arthritis by high-resolution peripheral quantitative CT. Ann Rheum Dis. 2010;69:1671–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72:1396–409.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stok KS, Finzel S, Burghardt AJ, Conaghan PG, Barnabe C, SPECTRA Collaboration. The SPECTRA collaboration OMERACT special interest group: current research and future directions. J Rheumatol. 2017;44(12):1911–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Axelsen MB, Stoltenberg M, Poggenborg RP, Kubassova O, Boesen M, Bliddal H, Hørslev-Petersen K, Hanson LG, Østergaard M. Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology. Scand J Rheumatol. 2012;41:89–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Miese F, Scherer A, Ostendorf B, Heinzel A, Lanzman RS, Kröpil P, Blondin D, Hautzel H, Wittsack HJ, Schneider M, Antoch G, Herzog H, Shah NJ. Hybrid 18F-FDG PET-MRI of the hand in rheumatoid arthritis: initial results. Clin Rheumatol. 2011;30:1247–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Narayan N, Owen DR, Taylor PC. Advances in positron emission tomography for the imaging of rheumatoid arthritis. Rheumatology (Oxford). 2017;56(11):1837–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Gent YY, Ter Wee MM, Voskuyl AE, den Uyl D, Ahmadi N, Dowling C, van Kuijk C, Hoekstra OS, Boers M, Lems WF, van der Laken CJ. Subclinical synovitis detected by macrophage PET, but not MRI, is related to short-term flare of clinical disease activity in early RA patients: an exploratory study. Arthritis Res Ther. 2015;17:266.Google Scholar
  26. 26.
    Goodin GS, Shulkin BL, Kaufman RA, McCarville MB. PET/CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease. AJR Am J Roentgenol. 2006;187:1124–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Teixeira da Fonseca S, de Melo Ocarino J, Pereira da Silva P, Ferreira de Aquino C. Integration of stresses and their relationship to the kinetic chain. In: Magee D, Zachazewski J, William Q, editors. Scientific foundations and principles of practice in musculoskeletal rehabilitation. St. Louis: Saunders Elsevier; 2007. p. 476–86.Google Scholar
  28. 28.
    Kainberger F, Mittermaier F, Seidl G, Parth E, Weinstabl R. Imaging of tendons–adaptation, degeneration, rupture. Eur J Radiol. 1997;25:209–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Carlsen BT, Shin AY. Wrist instability. Scand J Surg. 2008;97:324–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Morco S, Bowden A. Ulnar drift in rheumatoid arthritis: a review of biomechanical etiology. J Biomech. 2015;48:725–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Taljanovic MS, Malan JJ, Sheppard JE. Normal anatomy of the extrinsic capsular wrist ligaments by 3-T MRI and high-resolution ultrasonography. Semin Musculoskelet Radiol. 2012;16:104–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Bateni CP, Bartolotta RJ, Richardson ML, Mulcahy H, Allan CH. Imaging key wrist ligaments: what the surgeon needs the radiologist to know. AJR Am J Roentgenol. 2013;200:​1089–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Nobauer-Huhmann IM, Pretterklieber M, Erhart J, Bär P, Szomolanyi P, Kronnerwetter C, Lang S, Friedrich KM, Trattnig S. Anatomy and variants of the triangular fibrocartilage complex and its MR appearance at 3 and 7T. Semin Musculoskelet Radiol. 2012;16:93–103.CrossRefGoogle Scholar
  34. 34.
    Lewis OJ, Hamshere RJ, Bucknill TM. The anatomy of the wrist joint. J Anat. 1970;106:539–52.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Shahabpour M, Staelens B, Van Overstraeten L, De Maeseneer M, Boulet C, De Mey J, Scheerlinck T. Advanced imaging of the scapholunate ligamentous complex. Skelet Radiol. 2015;44:1709–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Pappou IP, Basel J, Deal DN. Scapholunate ligament injuries: a review of current concepts. Hand (NY). 2013;8:146–56.CrossRefPubMedGoogle Scholar
  37. 37.
    Theumann NH, Etechami G, Duvoisin B, Wintermark M, Schnyder P, Favarger N, Gilula LA. Association between extrinsic and intrinsic carpal ligament injuries at MR arthrography and carpal instability at radiography: initial observations. Radiology. 2006;238:950–7.CrossRefGoogle Scholar
  38. 38.
    Schmitt R. Ulnokarpaler Komplex (TFCC). In: Schmitt R, Lanz W, editors. Bildgebende Diagnostik der Hand. 2nd ed. Stuttgart: Thieme; 2004. p. 96–102.Google Scholar
  39. 39.
    Dihlmann W, Stäbler A. Gelenke–Wirbelverbindungen. Stuttgart: Thieme; 2011.Google Scholar
  40. 40.
    Parellada AJ, Morrison WB, Reiter SB, Carrino JA, Kloss LA, Glickman PL, McLean M, Culp RW. Flexor carpi radialis tendinopathy: spectrum of imaging findings and association with triscaphe arthritis. Skelet Radiol. 2006;35:572–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Short WH, Werner FW, Green JK, Sutton LG, Brutus JP. Biomechanical evaluation of the ligamentous stabilizers of the scaphoid and lunate: part III. J Hand Surg Am. 2007;32:297–309.CrossRefGoogle Scholar
  42. 42.
    Hirschmann A, Sutter R, Schweizer A, Pfirrmann CW. The carpometacarpal joint of the thumb: MR appearance in asymptomatic volunteers. Skelet Radiol. 2013;42:1105–12.CrossRefPubMedGoogle Scholar
  43. 43.
    Ateshian GA, Rosenwasser MP, Mow VC. Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. J Biomech. 1992;25:591–607.CrossRefPubMedGoogle Scholar
  44. 44.
    Canella Moraes Carmo C, Cruz GP, Trudell D, Hughes T, Chung C, Resnick D. Anatomical features of metacarpal heads that simulate bone erosions: cadaveric study using computed tomography scanning and sectional radiography. J Comput Assist Tomogr. 2009;33:573–8.Google Scholar
  45. 45.
    Crim J, Grossman J. Hand MR atlas. In: Manster B, Crim J, editors. Imaging anatomy–musculoskeletal. Philadelphia: Elsevier; 2016. p. 456.Google Scholar
  46. 46.
    Streicher J, Pretterklieber M. Bewegungsapparat. In: Anderhuber F, Pera F, Streicher J, editors. Waldeyer–Anatomie des Menschen. Berlin: Walter de Gruyter; 2012. p. 218–23.Google Scholar
  47. 47.
    Adams M. Functional anatomy of the musculoskeletal system. In: Standring S, editor. Grey’s anatomy. The anatomical basis of clinical practice. Philadelphia: Elsevier; 2016. p. 99.Google Scholar
  48. 48.
    Catrina AI, Svensson CI, Malmstrom V, Schett G, Klareskog L. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat Rev Rheumatol. 2017;13:79–86.CrossRefPubMedGoogle Scholar
  49. 49.
    Favalli EG, Becciolini A, Biggioggero M. Structural integrity versus radiographic progression in rheumatoid arthritis. RMD Open. 2015;1:e000064.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med. 1990;322:1277–89.CrossRefGoogle Scholar
  51. 51.
    Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, Gorman DM, Bowman EP, McClanahan TK, Yearley JH, Eberl G, Buckley CD, Kastelein RA, Pierce RH, Laface DM, Cua DJ. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8-entheseal resident T cells. Nat Med. 2012;18:1069–76.CrossRefPubMedGoogle Scholar
  52. 52.
    Benjamin M, McGonagle D. Basic concepts of enthesis biology and immunology. J Rheumatol Suppl. 2009;83:12–3.CrossRefPubMedGoogle Scholar
  53. 53.
    Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology. 2011;260:332–54.CrossRefPubMedGoogle Scholar
  54. 54.
    Martel W, Stuck KJ, Dworin AM, Hylland RG. Erosive osteoarthritis and psoriatic arthritis: a radiologic comparison in the hand, wrist, and foot. AJR Am J Roentgenol. 1980;134:125–35.CrossRefPubMedGoogle Scholar
  55. 55.
    Benninghoff A. Der funktionelle Aufbau des Hyalinknorpels. Ergeb Anat Entwickl Gesch. 1925;26:1–54.Google Scholar
  56. 56.
    Guermazi A, Roemer FW, Crema MD, Englund M, Hayashi D. Imaging of non-osteochondral tissues in osteoarthritis. Osteoarthr Cartil. 2014;22:1590–605.CrossRefPubMedGoogle Scholar
  57. 57.
    Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1:461–8.CrossRefGoogle Scholar
  58. 58.
    Blüml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol. 2014;36:531–40.CrossRefPubMedGoogle Scholar
  59. 59.
    McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 2016;4:16028.Google Scholar
  61. 61.
    Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Subchondral bone and cartilage disease: a rediscovered functional unit. Investig Radiol. 2000;35:581–8.CrossRefGoogle Scholar
  62. 62.
    Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8:656–64.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat. 2001;199:503–26.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dihlmann W, Bandick J. Die Gelenksilhouette - das Informationspotential der Roentgenstrahlen. Berlin: Springer; 1995.CrossRefGoogle Scholar
  65. 65.
    Hirtler L, Platzgummer H, Kainberger F. Pseudoerosions of the hands and feet in rheumatoid arthritis: anatomical concepts and redefinitions based on a systematic review. (in preparation) 2018.Google Scholar
  66. 66.
    McQueen F, Østergaard M, Peterfy C, Lassere M, Ejbjerg B, Bird P, O’Connor P, Genant H, Shnier R, Emery P, Edmonds J, Conaghan P. Pitfalls in scoring MR images of rheumatoid arthritis wrist and metacarpophalangeal joints. Ann Rheum Dis. 2005;64:i48–55.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mangnus L, van Steenbergen HW, Lindqvist E, Brouwer E, Reijnierse M, Huizinga TW, Gregersen PK, Berglin E, Rantapää-Dahlqvist S, van der Heijde D, van der Helm-van Mil AH. Studies on ageing and the severity of radiographic joint damage in rheumatoid arthritis. Arthritis Res Ther. 2015;17:222.Google Scholar
  68. 68.
    Cimmino MA, Bountis C, Silvestri E, Garlaschi G, Accardo S. An appraisal of magnetic resonance imaging of the wrist in rheumatoid arthritis. Semin Arthritis Rheum. 2000;30:180–95.CrossRefPubMedGoogle Scholar
  69. 69.
    Dohn UM, Ejbjerg BJ, Hasselquist M, Narvestad E, Moller J, Thomsen HS, Ostergaard M. Detection of bone erosions in rheumatoid arthritis wrist joints with magnetic resonance imaging, computed tomography and radiography. Arthritis Res Ther. 2008;10:R25.CrossRefGoogle Scholar
  70. 70.
    Wawer R, Budzik JF, Demondion X, Forzy G, Cotten A. Carpal pseudoerosions: a plain X-ray interpretation pitfall. Skelet Radiol. 2014;43:1377–85.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Franz Kainberger
    • 1
    Email author
  • Lena Hirtler
    • 2
  • Hannes Platzgummer
    • 1
  • Florian Huber
    • 1
  • Janina Patsch
    • 1
  • Claudia Weidekamm
    • 1
  1. 1.Division of Neuro- and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided TherapyMedical University of ViennaViennaAustria
  2. 2.Division of Anatomy, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria

Personalised recommendations