Advertisement

P-Glycoprotein-Like Transporters in Leishmania: A Search for Reversal Agents

  • Bruno Pradines
Chapter

Abstract

Until now, chemotherapy has been the main line of defense against Leishmania infections. However, drug use and abuse have resulted in the selection and development of resistance mechanisms which strongly limit the number of antiprotozoal agents that are effective for the treatment of this disease. The emergence and spread of resistance to drugs currently in use and available for leishmaniasis emphasize that new compounds need to be identified and developed and that novel chemotherapeutic targets must be characterized. Mechanisms of drug resistance are often associated with decreased uptake of the drug into the parasite, poor drug activation, physiological alterations in the drug target, and overexpression of drug transporter proteins. One mechanism of resistance to antimony in Leishmania involves a decrease in its accumulation by either reduced uptake or increased efflux, mediated by P-glycoprotein (Pgp)-like transporters, which belong to the ATP-binding cassette (ABC) superfamily of proteins. The inhibition of the function of these proteins represents an attractive way to control drug resistance in clinical environments. New natural or synthetic sesquiterpenes, flavonoids, acridonecarboxamide derivative modulators of human Pgp (zosuquidar and elacridar), statins, pyridine analogs, 8-aminoquinolines, or phenothiazines revert in Leishmania the resistance phenotype to antimony, pentamidine, sodium stibogluconate, and miltefosine by modulating intracellular drug concentrations. In this chapter, we review some concepts concerning the reversal mechanism of multidrug resistance by the use chemosensitizers which alter the capacity of Pgp.

Keywords

Leishmania P-glycoprotein ATP-binding cassette Multidrug-resistant protein Antileishmanial drug Chemosensitizer 

References

  1. 1.
    Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral Leishmaniasis. Antimicrob Agents Chemother. 1997;41:827–30.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Jackson JE, Tally JD, Ellis WY, Mebrahtu YB, et al. Quantitative in vitro drug potency and drug susceptibility evaluation of Leishmania spp. from patients unresponsive to pentavalent antimony therapy. Am J Trop Med Hyg. 1990;43:464–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Sundar S, More DK, Singh MK, Singh VP, et al. Failure of pentavalent antimony in visceral Leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis. 2000;31:1104–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Ambudkar SV, Rosen BP, Gottesman MM. Workshop on ABC transporters and human diseases. Drug Resist Update. 2000;3:51–4.CrossRefGoogle Scholar
  5. 5.
    Lage H. ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Ag. 2003;22:188–99.CrossRefGoogle Scholar
  6. 6.
    Rubio JP, Cowman AF. The ATP-binding cassette (ABC) gene family of Plasmodium falciparum. Parasitol Today. 1996;12:135–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, et al. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Ag. 2003;22:291–300.CrossRefGoogle Scholar
  8. 8.
    Sparreboom A, Danesi R, Ando Y, Chan J, et al. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Update. 2003;6:71–84.CrossRefGoogle Scholar
  9. 9.
    Araujo-Santos JM, Parodi-Talice A, Castanys S, Gamarro F. The overexpression of an intracellular ABCA-like transporter alters phospholipid trafficking in Leishmania. Biochem Biophys Res Commun. 2005;330:349–55.PubMedCrossRefGoogle Scholar
  10. 10.
    Chiquero MJ, Perez-Victoria JM, O’Valle F, Gonzales-Ros JM, et al. Altered drug membrane permeability in a multidrug-resistant Leishmania tropica line. Biochem Pharmacol. 1998;55:131–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Chow LM, Wong AK, Ullman B, Wirth DF. Cloning and functional analysis of an extrachromosomally amplified multidrug resistance-like gene in Leishmania enriettii. Mol Biochem Parasitol. 1993;60:195–208.PubMedCrossRefGoogle Scholar
  12. 12.
    Gamarro F, Chiquero MJ, Amador MV, Lagare D, et al. P-glycoprotein overexpression in methotrexate-resistant Leishmania tropica. Biochem Pharmacol. 1994;47:1939–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Gueiros-Filho FJ, Viola JPB, Gomes FCA, Farina M, et al. Leishmania amazonensis: multidrug resistance in vinblastine-resistant promastigotes is associated with rhodamine 123 efflux, DNA amplification, and RNA overexpression of a Leishmania mdr1 gene. Exp Parasitol. 1995;81:480–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Henderson DM, Sifri CD, Rodgers M, Wirth DF, et al. Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalian mdr1 gene. Mol Cell Biol. 1992;12:2855–65.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Katakura K, Iwanami M, Ohtomo H, Fujise H, et al. Structural and functional analysis of the LaMDR1 multidrug resistance gene in Leishmania amazonensis. Biochem Biophys Res Commun. 1999;255:289–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Mary C, Faraut F, Deniau M, Dereure J, et al. Frequency of drug resistance gene amplification in clinical Leishmania strains. Int J Microbiol. 2010;2010:819060.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wong ILK, Chow LMC. The role of Leishmania enriettii multidrug resistance protein 1 (LeMDR1) in mediating drug resistance is iron-dependent. Mol Biochem Parasitol. 2006;150:278–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Moreira DS, Monte Neto RL, Andrade JM, Santi AMM, et al. Molecular characterization of the MRPA transporter and antimony uptake in four new world Leishmania spp. susceptible and resistant to antimony. Int J Parasitol Drugs Drugs Resist. 2013;3:143–53.CrossRefGoogle Scholar
  19. 19.
    Borst P, Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol. 1995;49:427–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Chow LMC, Volkman K. Plasmodium and Leishmania: the role of mdr genes in mediating drug resistance. Exp Parasitol. 1998;90:135–41.PubMedCrossRefGoogle Scholar
  21. 21.
    El Fadili K, Messier N, Leprohon P, Roy G, et al. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother. 2005;49:1988–93.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ouellette M, Legare D, Papadopoulou B. Multidrug resistance and ABC transporters in parasitic protozoan. J Mol Microbiol Biotechnol. 2001;3:201–6.PubMedGoogle Scholar
  23. 23.
    Leprohon P, Legare D, Ouellette M. Intracellular localization of the ABCC proteins of Leishmania and their role in resistance to antimonials. Antimicrob Agents Chemother. 2009;53:2646–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rai S, Goel SK, Dwivedi UN, Sundar S, et al. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS One. 2013;8:74862.CrossRefGoogle Scholar
  25. 25.
    Soleimanifard S, Arjmand R, Saberi S, Khamesipour A, et al. P-glycoprotein a gene expression in glucantime-resistant and sensitive Leishmania major (MRHO/IR/75/ER). Iranian. J Parasitol. 2014;9:423–8.Google Scholar
  26. 26.
    Coelho AC, Beverley SM, Cotrim PC. Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol. 2003;130:83–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Coelho AC, Gentil LG, Franco da Silveira J, Cotrim PC. Characterization of Leishmania (Leishmania) amazonensis promastigotes resistant to pentamidine. Exp Parasitol. 2008;120:98–102.PubMedCrossRefGoogle Scholar
  28. 28.
    Coelho AC, Messier N, Ouellette M, Cotrim PC. Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother. 2007;51:3030–2.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Castanys-Munoz E, Perez-Victoria JM, Gamarro F, Castanys S. Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother. 2008;52:3573–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bose Dasgupta S, Ganguly A, Roy A, Mukherjee T, et al. A novel ATP-binding cassette transporter, ABCG6 is involved in chemoresistance in Leishmania. Mol Biochem Parasitol. 2008;158:176–88.CrossRefGoogle Scholar
  31. 31.
    Alibert-Franco S, Pradines B, Mahamoud A, Davin-Regli A, et al. Efflux mechanism, an attractive target to combat Plasmodium falciparum and Pseudomonas aeruginosa. Curr Med Chem. 2009;16:301–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Henry M, Alibert S, Orlandi-Pradines E, Bogreau H, et al. Chloroquine resistance reversal agents as promising antimalarial drugs. Curr Drug Targets. 2006;7:935–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Henry M, Alibert S, Rogier C, Barbe J, et al. Inhibition of efflux of quinolines as new therapic strategy in malaria. Curr Top Med Chem. 2008;8:563–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Perea A, Manzano JI, Castanys S, Gamarro F. The LABCG2 transporter from the protozoan parasite Leishmania is involved in antimony resistance. Antimicrob Agents Chemother. 2016;60:3489–96.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Stein WD. Reversers of the multidrug resistance transporter P-glycoprotein. Curr Opin Investig Drugs. 2002;3:812–7.PubMedGoogle Scholar
  36. 36.
    Neal RA, van Bueren J, McCoy NG, Iwobi M. Reversal of drug resistance in Trypanosoma cruzi and Leishmania donovani by verapamil. Trans R Soc Trop Med Hyg. 1989;83:197–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Basselin M, Denise H, Coombs GH, Barrett MP. Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother. 2002;46:3731–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dey S, Papadopoulou B, Haimeur A, Roy G, et al. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 1994;67:49–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Essodaïgui M, Frézard F, Moreira ESA, Dagger F, et al. Energy-dependent efflux from Leishmania promastigotes of substrates of the mammalian multidrug resistance pumps. Mol Biochem Parasitol. 1999;100:73–84.PubMedCrossRefGoogle Scholar
  40. 40.
    el-On J, Rubinstein N, Kernbaum S, Schnur LF. In vitro and in vivo anti-leishmanial activity of chlorpromazine alone and combined with N-meglumine antimonate. Ann Trop Med Parasitol. 1986;80:509–17.PubMedCrossRefGoogle Scholar
  41. 41.
    Perez-Victoria JM, Chiquero MJ, Conseil G, Dayan G, et al. Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry. 1999;38:1736–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Wong ILK, Chan KF, Burkett BA, Zhao Y, et al. Flavonoid dimmers as bivalent modulators for pentamidine and sodium stibogluconate resistance in Leishmania. Antimicrob Agent Chemother. 2007;51:930–40.CrossRefGoogle Scholar
  43. 43.
    Manzano JI, Lecerf-Schmidt F, Lespinasse MA, Di Pietro A, et al. Identification of specific reversal agents for Leishmania ABCI4-mediated antimony resistance by flavonoid and trolox derivatives screening. J Antimicrob Agents. 2014;69:664–72.CrossRefGoogle Scholar
  44. 44.
    Kennedy ML, Lianos GG, Castanys S, Gamarro F, et al. Terpenoids from Maytenus species and assessment of their reversal activity against a multidrug-resistant Leishmania tropica line. Chem Biodivers. 2011;8:2291–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Bhattacharjee A, Majumder S, Majumdar SB, Choudhuri SK, et al. Co-administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG-resistant visceral leishmaniasis. Int J Antimicrob Agents. 2015;45:268–77.PubMedCrossRefGoogle Scholar
  46. 46.
    Mookerjee Basu J, Mookerjee A, Banerjee R, Saha M, et al. Inhibition of ABC transporters abolished antimony resistance in Leishmania infection. Antimicrob Agents Chemother. 2008;52:1080–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Caballero E, Manzano JI, Puebla P, Castanys S, et al. Oxazolo[3,2-]pyridine. A new structural scaffold for the reversal of multi-drug resistance in Leishmania. Bioorg Med Chem Lett. 2012;22:6272–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Serrano-Martin X, Payares G, Mendoza-Leon A. Glibenclamide, a blocker of K+ATP channels, shows antilesihmanial activity in experimental murine cutaneous leishmaniasis. Antimicrob Agents Chemother. 2006;50:4214–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Padron-Nieves M, Diaz E, Machuca C, Romero A, et al. Glibenclamide modulates glucantime activity and disposition in Leishmania major. Exp Parasitol. 2009;121:331–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Jimenez-Alonso S, Perez-Lomas AL, Estevez-Braun A, Munoz Martinez F, et al. Bis-pyranobenzoquinones as a new family of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in mammalian cells and the protozoan parasite Leishmania. J Med Chem. 2008;51:7132–43.PubMedCrossRefGoogle Scholar
  51. 51.
    Wong ILK, Chan KF, Zhao Y, Hang Chan T, et al. Quinacrine and a novel apigenin dimmer can synergistically increase the pentamidine susceptibility of the protozoan parasite Leishmania. J Antimicrob Chemother. 2009;63:1179–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Perez-Victoria JM, Bavchvarov BI, Torrecillas IR, Martinez-Garcia M, et al. Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania. Antimicrob Agents Chemother. 2011;55:3838–44.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Perez-Victoria JM, Perez-Victoria FJ, Parodi-Talice A, Jimenez IA, et al. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother. 2001;45:2468–74.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981;41:1967–72.PubMedGoogle Scholar
  55. 55.
    Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Potentiation of vincristine and adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res. 1983;43:2267–72.PubMedGoogle Scholar
  56. 56.
    Twentyman PR, Fox NE, Bleehen NM. Drug resistance in human lung cancer cell lines: cross-resistance studies and effects of the calcium transport blocker, verapamil. J Radiat Oncol Biol Phys. 1986;12:1355–8.CrossRefGoogle Scholar
  57. 57.
    Banerjee SK, Bhatt K, Rana S, Misra P, et al. Involvement of an efflux system in mediating high level of fluoroquinolone resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun. 1996;226:362–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Choudhuri BS, Bahkta S, Barik R, Basu J, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J. 2002;367:279–85.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jonas BM, Murray BE, Weinstock GM. Characterization of emeA, a NorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob Agents Chemother. 2001;45:3574–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Beugnet F, Gauthey M, Kerboeuf D. Partial in vitro reversal of benzimidazole resistance by the free-living stages of Haemonchus contortus with verapamil. Vet Rec. 1997;141:575–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Kerboeuf D, Blackhall W, Kaminsky R, von Samson-Himmelstjerna G. P-glycoprotein in helminths: function and perspectives for antihelminthic treatment and reversal of resistance. Int J Antimicrob Agents. 2003;22:332–46.PubMedCrossRefGoogle Scholar
  62. 62.
    Kerboeuf D, Chambrier P, Le Vern Y, Aycardi J. Flow cytometry analysis of drug transport mechanisms in Haemonchus contortus susceptible or resistant to antihelminthics. Parasitol Res. 1999;85:118–23.PubMedCrossRefGoogle Scholar
  63. 63.
    Ayala P, Samuelson J, Wirth D, Orozco E. Entamoeba histolytica: physiology of multidrug resistance. Exp Parasitol. 1990;71:169–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Banuelos C, Orozco E, Gomez C, Gonzales A, et al. Cellular location and function of the P-glycoprotein (EhPgp) in Entamoeba histolytica multidrug-resistant trophozoites. Microb Drug Resist. 2002;8:291–300.PubMedCrossRefGoogle Scholar
  65. 65.
    Orozco E, Lopez C, Gomez C, Perez DG, et al. Multidrug resistance in the protozoan parasite Entamoeba histolytica. Parasitol Int. 2002;51:353–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Holtzman CW, Wiggings BS, Spinler SA. Role of P-glycoprotein in statin drug interaction. Pharmacotherapy. 2006;26:1601–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Millet J, Torrentino-Madamet M, Alibert S, Rogier C, et al. Dihydroethanoanthracene derivatives as in vitro malarial chloroquine resistance reversal agents. Antimicrob Agents Chemother. 2004;48:2753–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pradines B, Alibert-Franco S, Houdoin C, Mosnier J, et al. In vitro reversal of chloroquine resistance in Plasmodium falciparum with dihydroethanoanthracene derivatives. Am J Trop Med Hyg. 2002;66:661–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Matsson P, Pedersen JM, Norinder U, Bergstrom CAS, et al. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters, P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26:1816–31.PubMedCrossRefGoogle Scholar
  70. 70.
    Valiathan R, Dubey ML, Mahajan RC, Malla N. Leishmania donovani: effect of verapamil on in vitro susceptibility of promastigote and amastigote stages of Indian clinical isolates to sodium stibogluconate. Exp Parasitol. 2006;114:103–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Marquis JF, Hardy I, Olivier M. Topoisomerase I amino acid substitutions, Gly185Arg and Asp325Glu, confer camptothecin resistance in Leishmania donovani. Antimicrob Agents Chemother. 2005;49:1441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kaur J, Dey CS. Putative P-glycoprotein expression in arsenite-resistant Leishmania donovani down-regulated by verapamil. Biochem Biophys Res Commun. 2000;271:615–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Loe DW, Deeley RG, Cole SPC. Verapamil stimulates glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). J Pharmacol Exp Ther. 2000;293:530–8.PubMedGoogle Scholar
  74. 74.
    Loe DW, Oleschuk CJ, Deeley RG, Cole SPC. Structure-activity studies of verapamil analogs that modulate transport of Leukotriene C4 and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun. 2000;275:795–803.PubMedCrossRefGoogle Scholar
  75. 75.
    Sereno D, Lemesre JL. In vitro life cycle of pentamidine-resistant amastigotes: stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrob Agents Chemother. 1997;41:1898–903.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Mukherjee A, Padmanabhan PK, Sahani MH, Barrett MP, et al. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol Biochem Parasitol. 2006;145:1–10.PubMedCrossRefGoogle Scholar
  77. 77.
    Decuypere S, Rijal S, Yardley V, De Doncker S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49:4616–21.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Machuca C, Rodriguez A, Herrera M, Silva S, et al. Leishmania amazonensis: metabolic adaptations induced by resistance to an ABC transporter blocker. Exp Parasitol. 2006;114:1–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Ford JM, Prozialeck WC, Hait WN. Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol Pharmacol. 1989;35:105–15.PubMedGoogle Scholar
  80. 80.
    Henry M, Alibert S, Baragatti M, Mosnier J, et al. Dihydroethanoanthracene derivatives reverse in vitro quinoline resistance in Plasmodium falciparum malaria. Med Chem. 2008;4:426–37.PubMedCrossRefGoogle Scholar
  81. 81.
    Molnar J, Hever A, Falka I, Ocsovski I, et al. Inhibition of the transport function of membrane proteins by some substituted phenothiazines in E. coli and multidrug resistant tumor cells. Anticancer Res. 1997;17:481–6.PubMedGoogle Scholar
  82. 82.
    Pearce HL, Safa AR, Bac NJ, Winter MA, et al. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc Natl Acad Sci U S A. 1989;86:5128–32.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pearson RD, Manian AA, Hall D, Harcus JL, et al. Antileishmanial activity of chlorpromazine. Antimicrob Agents Chemother. 1984;25:571–4.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pearson RD, Manian AA, Harcus JL, Hall D, et al. Lethal effect of phenothiazine neuroleptics on the pathogenic protozoan Leishmania donovani. Science. 1982;217:369–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Werbovetz KA, Lehnert EK, MacDonald TL, Pearson RD. Cytotoxicity of acridine compounds for Leishmania promastigotes in vitro. Antimicrob Agents Chemother. 1992;36:495–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chan C, Yin H, Garforth J, McKie JH, et al. Phenothiazines inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J Med Chem. 1998;41:148–56.PubMedCrossRefGoogle Scholar
  87. 87.
    Khan MO, Austin SE, Chan C, Yin H, et al. Use of an additional hydrophobic binding site, the Z site, in the rational design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J Med Chem. 2000;43:3148–56.PubMedCrossRefGoogle Scholar
  88. 88.
    Loe DW, Stewart RK, Massey TE, Deeley RG, et al. ATP-dependent transport of aflatoxin B1, and its glutathione conjugates by the product of the multidrug resistance protein (MRP) gene. Mol Pharmacol. 1997;51:1034–41.PubMedCrossRefGoogle Scholar
  89. 89.
    di Pietro A, Conseil G, Perez-Victoria JM, Dayan G, et al. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell Mol Life Sci. 2002;59:307–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Kennedy ML, Cortes F, Pinero JE, Castanys S, et al. Leishmanicidal and reversal multidrug resistance constituents from Aeonium lindleyi. Planta Med. 2011;77:77–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Kennedy ML, Cortés-Selva F, Perez-Victoria JM, Jimenez IA, et al. Chemosensitization of a multidrug-resistant Leishmania tropica line by new sesquiterpenes from Maytenus magellanica and Maytenus chubutensis. J Med Chem. 2001;44:4668–76.PubMedCrossRefGoogle Scholar
  92. 92.
    Shapiro AB, Ling V. Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol. 1997;53:587–96.PubMedCrossRefGoogle Scholar
  93. 93.
    Critchfield JW, Welsh CJ, Phang JM, Yeh GC. Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem Pharmacol. 1994;48:1437–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Ferté J, Kühnel JM, Chapuis G, Rolland Y, et al. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. J Med Chem. 1999;42:478–89.PubMedCrossRefGoogle Scholar
  95. 95.
    Shapiro AB, Ling V. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem. 1997;250:130–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Maitrejean M, Comte G, Barron D, El Kirat K, et al. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg Med Chem Lett. 2000;10:157–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, et al. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci U S A. 1998;95:9831–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kioka N, Hosokawa N, Komano T, Hirayoshi K, et al. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite. FEBS Lett. 1992;301:307–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Yoshikawa M, Ikegami Y, Sano K. Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. J Exp Ther Oncol. 2004;4:25–35.PubMedGoogle Scholar
  100. 100.
    Manzano JI, Garcia-Hernandez R, Castanys S, Gamarro F. A new ABC half-transporter in Leishmania is involved in resistance to antimony. Antimicrob Agents Chemother. 2013;57:3719–30.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cortes-Selva F, Campillo M, Reyes CP, Jimenez IA, et al. SAR studies of dihydro-beta-agarofuran sesquiterpenes as inhibitors of the multidrug-resistance phenotype in a Leishmania tropica line overexpressing a P-glycoprotein-like transporter. J Med Chem. 2004;47:576–87.PubMedCrossRefGoogle Scholar
  102. 102.
    Cortes-Selva F, Munoz-Martinez F, Ilias A, Jimenez IA, et al. Functional expression of a multidrug P-glycoprotein transporter of Leishmania. Biochem Biophys Res Commun. 2005;329:502–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Cortes-Selva F, Jimenez IA, Munoz-Martinez F, Campillo M, et al. Dihydro-beta-agarofuran sesquiterpenes: a new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania. Curr Pharm Des. 2005;11:3125–39.PubMedCrossRefGoogle Scholar
  104. 104.
    Delgado-Mendez P, Herrera N, Chavez H, Estevez-Braun A, et al. New terpenoids from Maytenus apurimacensis as MDR reversal agents in the parasite Leishmania. Bioorg Med Chem. 2008;16:1425–30.PubMedCrossRefGoogle Scholar
  105. 105.
    Perez-Victoria JM, Tincusi BM, Jimanez IA, Bazzocchi IL, et al. New natural sesquiterpenes as modulators of daunomycin resistance in a multidrug-resistant Leishmania tropica line. J. Med Chem. 1999;42:4388–93.CrossRefGoogle Scholar
  106. 106.
    Callaghan R, van Gorkom LC, Epand RM. A comparison of membrane properties and composition between cell lines selected and transfected for multi-drug resistance. Br J Cancer. 1992;66:781–6.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Storme GA, Berdel WE, van Blitterswijk WJ, Bruyneel EA, et al. Antiinvasive effect of racemic 1-O-octadecyl-2-O-methylglycero-phosphocholine on MO4 mouse fibrosarcoma cells in vitro. Cancer Res. 1985;45:351–7.PubMedGoogle Scholar
  108. 108.
    Greenwood J, Mason JC. Statins and the vascular endothelial inflammatory response. Trends Immunol. 2007;28:88–98.PubMedCrossRefGoogle Scholar
  109. 109.
    Terblanche M, Almog Y, Rosenson RS, Smith TS, et al. Statins: panacea for sepsis? Lancet Infect Dis. 2006;6:242–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Montalvetti A, Pena-Diaz J, Hurtado R, Ruiz-Perez LM, et al. Characterization and regulation of Leishmania major 3-hydroxy-methyl-glutaryl—CoA reductase. Biochem J. 2000;349:27–34.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Urbina JA, Lazardi K, Marchan E, Visbal G, et al. Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1993;37:580–91.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yokoyama K, Trobridge P, Buckner FS, Scholten J, et al. The effects of protein farnesyltransferase inhibitors on trypanosomatids: inhibition of protein farnesylation and cell growth. Mol Biochem Parasitol. 1998;94:87–97.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang E, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001;18:800–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Wu X, Whitfield I, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Pharm Res. 2000;17:209–15.PubMedCrossRefGoogle Scholar
  115. 115.
    Parquet V, Henry M, Wurtz N, Dormoi J, et al. Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against Plasmodium falciparum. Malar J. 2010;9:139.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Savini H, Souraud JB, Briolant S, Baret E, et al. Atorvastatin as a potential antimalarial drug: in vitro synergy in combinational therapy with dihydroartemisinin. Antimicrob Agents Chemother. 2010;54:966–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Wurtz N, Briolant S, Gil M, Parquet V, et al. Synergy of mefloquine activity with atorvastatin, but not chloroquine and monodesethylamodiaquine, and association with the pfmdr1 gene. J Antimicrob Chemother. 2010;65:1387–94.PubMedCrossRefGoogle Scholar
  118. 118.
    Haughan PA, Chance ML, Goad LJ. Synergism in vitro of lovastatin and miconazole as anti-leishmanial agents. Biochem Pharmacol. 1992;44:2199–206.PubMedCrossRefGoogle Scholar
  119. 119.
    Chen ZS, Mutoh M, Sumizawa T, Furukawa T, et al. Reversal of heavy metal resistance in multidrug-resistant human KB carcinoma cells. Biochem Biophys Res Commun. 1997;236:586–90.PubMedCrossRefGoogle Scholar
  120. 120.
    Chuman Y, Chen ZS, Seto K, Sumizawa T, et al. Reversal of MRP-mediated vincristine resistance in KB cells by buthionine sulfoximine in combination with PAK-104P. Cancer Lett. 1998;129:69–76.PubMedCrossRefGoogle Scholar
  121. 121.
    Kitasono M, Okumura H, Ikeda R, Sumizawa T, et al. Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int J Cancer. 2001;91:126–31.CrossRefGoogle Scholar
  122. 122.
    Shudo N, Mizoguchi T, Kiyosue T, Arita M, et al. Two pyridine analogues with more effective ability to reverse multidrug resistance and with lower calcium blocking activity than their dihydropyridine counterparts. Cancer Res. 1990;50:3055–61.PubMedGoogle Scholar
  123. 123.
    Sumizawa T, Chen ZS, Chuman Y, Seto K, et al. Reversal of multidrug resistance-associated protein-mediated drug resistance by the pyridine analog PAK-104P. Mol Pharmacol. 1997;51:399–405.PubMedGoogle Scholar
  124. 124.
    Vanhoefer U, Cao S, Minderman H, Toth K, et al. PAK-104P, a pyridine analogue, reverses paclitaxel and doxorubicin resistance in cell lines and nude mice bearing xenografts that overexpress the multidrug resistance protein. Clin Cancer Res. 1996;2:369–77.PubMedGoogle Scholar
  125. 125.
    Tachiwada T, Chen ZS, Che XF, Matsumoto M, et al. Isolation and characterization of arsenite-resistant human epidermoid carcinoma KB cells. Oncol Rep. 2007;18:721–7.PubMedGoogle Scholar
  126. 126.
    Golstein PE, Boom A, van geffel J, Jacobs P, et al. P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. 1999;437:652–60.PubMedCrossRefGoogle Scholar
  127. 127.
    Conseil G, Deeley RG, Cole SPC. Role of two adjancent cytoplasmic tyrosine residues in MRP1 (ABCC1) transport activity and sensitivity to sulfonylureas. Biochem Pharmacol. 2005;69:451–61.PubMedCrossRefGoogle Scholar
  128. 128.
    Gayet L, Picault N, Cazalé AC, Beyly A, et al. Transport of antimony salts by Arabidopsis thaliana protoplasts over-expressing the human multidrug resistance-associated protein 1 (MRP1/ABCC1). FEBS Lett. 2006;580:6891–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Dantzig AH, Law KL, Cao J, Starling JJ. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem. 2001;8:39–50.PubMedCrossRefGoogle Scholar
  130. 130.
    Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 1993;53:4595–602.PubMedGoogle Scholar
  131. 131.
    Perez-Victoria JM, Cortes-Selva F, Parodi-Talice A, Bavchvarov BI, et al. Combination of suboptimal doses of inhibitors targeting different domains of LtrMDR1 efficiently overcomes resistance of Leishmania spp. to miltefosine by inhibiting drug efflux. Antimicrob Agent Chemother. 2006;50:3102–10.CrossRefGoogle Scholar
  132. 132.
    Castanys-Munoz E, Alder-Baerens N, Pomorski T, Gamarro F, et al. A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol. 2007;64:1141–53.PubMedCrossRefGoogle Scholar
  133. 133.
    Deharo E, Barkan D, Krugliak M, Golenser J, et al. Potentialization of the antimalarial action of chloroquine in rodent malaria by drugs known to reduce cellular glutathione levels. Biochem Pharmacol. 2003;66:809–17.PubMedCrossRefGoogle Scholar
  134. 134.
    Loo TW, Bartlett MC, Clarke DM. Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein. Mol Pharm. 2004;1:426–33.PubMedCrossRefGoogle Scholar
  135. 135.
    Loo TW, Clarke DM. Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism. J Natl Cancer Inst. 2000;92:898–902.PubMedCrossRefGoogle Scholar
  136. 136.
    Namazi MR. Potential utility of disulfiram against leishmaniasis. Indian J Med Res. 2008;127:193–4.PubMedGoogle Scholar
  137. 137.
    Gamage SA, Figgitt DP, Wojcik SJ, Ralph RK, et al. Structure-activity relationships for the antileishmanial and trypanosomal activities of 1′-substituted 9-anilinoacridines. J Med Chem. 1997;40:2634–42.PubMedCrossRefGoogle Scholar
  138. 138.
    Gamage SA, Tepsiri N, Wilairat P, Wojcik SJ, et al. Synthesis and in vitro evaluation of 9-anilino-3,6-diaminoacridines active against a multidrug-resistant strain of the malaria parasite Plasmodium falciparum. J Med Chem. 1994;37:1486–94.PubMedCrossRefGoogle Scholar
  139. 139.
    Girault S, Grellier P, Berecibar A, Maes L, et al. Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker. J Med Chem. 2000;43:2646–54.PubMedCrossRefGoogle Scholar
  140. 140.
    Seeger MA, Schiefner A, Eicher T, Verrey F. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science. 2006;313:1295–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Pedersen JM, Matsson P, Bergstrom CA, Norinder U, et al. Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J Med Chem. 2008;51:3275–87.PubMedCrossRefGoogle Scholar
  142. 142.
    Pajeva IK, Globisch C, Wiese M. Combined pharmacophore modeling, docking, and 3D QSAR studies of ABCB1 and ABCC1 transporter inhibitors. Chem Med Chem. 2009;4:1883–96.PubMedCrossRefGoogle Scholar
  143. 143.
    Vergnes B, Sereno D, Madjidian-Sereno N, Lesmesre JL, Ouaissi A. Cytoplasmic SIR2 homologue overexpression promotes survival of Leishmania parasites by preventing programmed cell death. Gene. 2002;296:139–50.PubMedCrossRefGoogle Scholar
  144. 144.
    Purkait B, Singh R, Wasnik K, Das S, et al. Up-regulation of silent information regulator 2 (Sir2) is associated with amphotericin B resistance in clinical isolates of Leishmania donovani. J Antimicrob Agents. 2015;70:1343–56.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bruno Pradines
    • 1
  1. 1.Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France & Unité de Recherche sur les Maladies Infectieuses et Tropicales EmergentesInstitut Hospitalo-Universitaire (IHU) Méditerranée InfectionMarseilleFrance

Personalised recommendations