Advertisement

Bioinformatics in Leishmania Drug Design

  • Shishir K. Gupta
  • Thomas Dandekar
Chapter

Abstract

Leishmania drug design follows the typical path of the flow of genetic information: By analyzing genome information and considering infection-specific RNA and protein expression, potential targets for drug design and vaccine development are identified. Therefore, to implement successful intervention strategies against Leishmania infection, specific features of the process are critical; herein they are described, including specific genome information, good vaccine targets, and classical as well as innovative drug targeting strategies. In addition, a combination of software and web sites has been structured here with references and tools for rapid analysis to rank and examine new target structures in Leishmania.

Notes

Acknowledgments

We thank DFG (TR124/B1) and the land of Bavaria for support.

References

  1. 1.
  2. 2.
    World Health Organization, September 2016.Google Scholar
  3. 3.
    Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39(7):839–47.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Otranto D, Dantas-Torres F. The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol. 2013;29(7):339–45.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Marsden PD. Mucosal leishmaniasis (“espundia” Escomel, 1911). Trans R Soc Trop Med Hyg. 1986;80(6):859–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Dougall AM, Alexander B, Holt DC, Harris T, et al. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol. 2011;41(5):571–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Alvar J, Velez ID, Bern C, Herrero M, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
  10. 10.
    Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37(10):1097–106.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ivens AC, Peacock CS, Worthey EA, Murphy L, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436–42.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Raymond F, Boisvert S, Roy G, Ritt JF, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40(3):1131–47.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Coughlan S, Mulhair P, Sanders M, Schonian G, et al. The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci Rep. 2017;7:43747.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Remadi L, Haouas N, Chaara D, Slama D, et al. Clinical presentation of cutaneous leishmaniasis caused by Leishmania major. Dermatology. 2016;232(6):752–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    do Rego Lima LV, Santos Ramos PK, Campos MB, dos Santos TV, et al. Preclinical diagnosis of American visceral leishmaniasis during early onset of human Leishmania (L.) infantum chagasi-infection. Pathog Glob Health. 2014;108(8):381–4.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Castro LS, Franca Ade O, Ferreira Ede C, Hans Filho G, et al. Leishmania infantum as a causative agent of cutaneous leishmaniasis in the state of Mato Grosso Do Sul, Brazil. Rev Inst Med Trop Sao Paulo. 2016;58:23.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Alves-Ferreira EV, Toledo JS, De Oliveira AH, Ferreira TR, et al. Differential gene expression and infection profiles of cutaneous and mucosal Leishmania braziliensis isolates from the same patient. PLoS Negl Trop Dis. 2015;9(9):e0004018.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Farias LH, Rodrigues AP, Silveira FT, Seabra SH, et al. Phosphatidylserine exposure and surface sugars in two Leishmania (Viannia) braziliensis strains involved in cutaneous and mucocutaneous leishmaniasis. J Infect Dis. 2013;207(3):537–43.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Gomes CM, de Paula NA, Cesetti MV, Roselino AM, Sampaio RN. Mucocutaneous leishmaniasis: accuracy and molecular validation of noninvasive procedures in a L. (V.) braziliensis-endemic area. Diagn Microbiol Infect Dis. 2014;79(4):413–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Avila-Garcia M, Mancilla-Ramirez J, Segura-Cervantes E, Farfan-Labonne B, et al. Transplacental transmission of cutaneous Leishmania mexicana strain in BALB/c mice. Am J Trop Med Hyg. 2013;89(2):354–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Galindo-Sevilla N, Soto N, Mancilla J, Cerbulo A, et al. Low serum levels of dehydroepiandrosterone and cortisol in human diffuse cutaneous leishmaniasis by Leishmania mexicana. Am J Trop Med Hyg. 2007;76(3):566–72.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Picado A, Ostyn B, Singh SP, Uranw S, et al. Risk factors for visceral leishmaniasis and asymptomatic Leishmania donovani infection in India and Nepal. PLoS One. 2014;9(1):e87641.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Morales CA, Palacio J, Rodriguez G, Camargo YC. Zosteriform cutaneous leishmaniasis due to Leishmania (Viannia ) panamensis and Leishmania (Viannia ) braziliensis: report of three cases. Biomedica. 2014;34(3):340–4.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ives A, Ronet C, Prevel F, Ruzzante G, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331(6018):775–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gupta AK, Srivastava S, Singh A, Singh S. De novo whole-genome sequence and annotation of a Leishmania strain isolated from a case of post-kala-azar dermal Leishmaniasis. Genome Announc. 2015;3(4):e00809.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Mirzaei A, Schweynoch C, Rouhani S, Parvizi P. Diversity of Leishmania species and of strains of Leishmania major isolated from desert rodents in different foci of cutaneous leishmaniasis in Iran. Trans R Soc Trop Med Hyg. 2014;108(8):502–12.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Peters W, Bryceson A, Evans DA, Neal RA, et al. Leishmania infecting man and wild animals in Saudi Arabia. 8. The influence of prior infection with Leishmania arabica on challenge with L. major in man. Trans R Soc Trop Med Hyg. 1990;84(5):681–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Eslami G, Hajimohammadi B, Jafari AA, Mirzaei F, et al. Molecular identification of Leishmania tropica infections in patients with cutaneous leishmaniasis from an endemic central of Iran. Trop Biomed. 2014;31(4):592–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kwakye-Nuako G, Mosore MT, Duplessis C, Bates MD, et al. First isolation of a new species of Leishmania responsible for human cutaneous leishmaniasis in Ghana and classification in the Leishmania enriettii complex. Int J Parasitol. 2015;45(11):679–84.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Yamamoto ES, Campos BL, Jesus JA, Laurenti MD, et al. The effect of ursolic acid on Leishmania (Leishmania) amazonensis is related to programed cell death and presents therapeutic potential in experimental cutaneous leishmaniasis. PLoS One. 2015;10(12):e0144946.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Coelho AC, Trinconi CT, Costa CH, Uliana SR. In vitro and in vivo miltefosine susceptibility of a Leishmania amazonensis isolate from a patient with diffuse cutaneous leishmaniasis. PLoS Negl Trop Dis. 2014;8(7):e2999.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Eliseev LN, Strelkova MV, Zherikhina II. The characteristics of the epidemic activation of a natural focus of zoonotic cutaneous leishmaniasis in places with a sympatric dissemination of Leishmania major, L. turanica and L. gerbilli. Med Parazitol (Mosk). 1991;3:24–9.Google Scholar
  35. 35.
    Negera E, Gadisa E, Hussein J, Engers H, et al. Treatment response of cutaneous leishmaniasis due to Leishmania aethiopica to cryotherapy and generic sodium stibogluconate from patients in Silti, Ethiopia. Trans R Soc Trop Med Hyg. 2012;106(8):496–503.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Akuffo HO, Fehniger TE, Britton S. Differential recognition of Leishmania aethiopica antigens by lymphocytes from patients with local and diffuse cutaneous leishmaniasis. Evidence for antigen-induced immune suppression. J Immunol. 1988;141(7):2461–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Longoni SS, Marin C, Sanchez-Moreno M. Excreted Leishmania peruviana and Leishmania amazonensis iron-superoxide dismutase purification: specific antibody detection in Colombian patients with cutaneous leishmaniasis. Free Radic Biol Med. 2014;69:26–34.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol. 2012;2:72.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hassani K, Shio MT, Martel C, Faubert D. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS One. 2014;9(4):e95007.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Depledge DP, Evans KJ, Ivens AC, Aziz N, et al. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis. 2009;3(7):e476.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gupta SK, Bencurova E, Srivastava M, Pahlavan P. Improving re-annotation of annotated eukaryotic genomes. In: Big data analytics in genomics. Cham: Springer; 2016. p. 171–95.CrossRefGoogle Scholar
  42. 42.
    Gupta SK, Kupper M, Ratzka C, Feldhaar H, et al. Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing. BMC Genomics. 2015;16:540.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Torres F, Arias-Carrasco R, Caris-Maldonado JC, Barral A, et al. LeishDB: a database of coding gene annotation and non-coding RNAs in Leishmania braziliensis. Database. 2017;2017:bax047.  https://doi.org/10.1093/database/bax047. [1758-0463 (Electronic)]CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Pigott DM, Bhatt S, Golding N, Duda KA, et al. Global distribution maps of the leishmaniases. elife. 2014;3Google Scholar
  45. 45.
  46. 46.
    Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, et al. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 2017;45(D1):D581–d591.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Aslett M, Aurrecoechea C, Berriman M, Brestelli J, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–62.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
  49. 49.
    Logan-Klumpler FJ, De Silva N, Boehme U, Rogers MB, et al. GeneDB—an annotation database for pathogens. Nucleic Acids Res. 2012;40(Database issue):D98–108.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
  51. 51.
    Gazestani VH, Yip CW, Nikpour N, Berghuis N, et al. TrypsNetDB: an integrated framework for the functional characterization of trypanosomatid proteins. PLoS Negl Trop Dis. 2017;11(2):e0005368.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
  53. 53.
    Saunders EC, MacRae JI, Naderer T, Ng M, et al. LeishCyc: a guide to building a metabolic pathway database and visualization of metabolomic data. Methods Mol Biol. 2012;881:505–29.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
  55. 55.
    Dikhit MR, Moharana KC, Sahoo BR, Sahoo GC, et al. LeishMicrosatDB: open source database of repeat sequences detected in six fully sequenced Leishmania genomes. Database. 2014;2014:bau078.  https://doi.org/10.1093/database/bau078.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
  57. 57.
    Patel P, Mandlik V, Singh S. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni. Genom Data. 2016;7:115–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
  59. 59.
    Real F, Vidal RO, Carazzolle MF, Mondego JM, Costa GG, Herai RH, et al. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res. 2013;20(6):567–81.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
  61. 61.
    Rana S, Dikhit MR, Rani M, Moharana KC, Sahoo GC, Das P. CPDB: cysteine protease annotation database in Leishmania species. Integr Biol (Camb). 2012;4(11):1351–7.CrossRefGoogle Scholar
  62. 62.
  63. 63.
    Dikhit MR, Nathasharma YP, Patel L, Rana SP, et al. A comparative protein function analysis database of different Leishmania strains. Bioinformation. 2011;6(1):20–2.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Waugh B, Ghosh A, Bhattacharyya D, Ghoshal N, et al. In silico work flow for scaffold hopping in Leishmania. BMC Res Notes. 2014;7:802.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
  66. 66.
    Chavali AK, Whittemore JD, Eddy JA, Williams KT, et al. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol. 2008;4:177.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
  68. 68.
    Hernandez-Santana YE, Ontoria E, Gonzalez-Garcia AC, Quispe-Ricalde MA, et al. The challenge of stability in high-throughput gene expression analysis: comprehensive selection and evaluation of reference genes for BALB/c mice spleen samples in the Leishmania infantum infection model. PLoS One. 2016;11(9):e0163219.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Patino LH, Ramirez JD. RNA-seq in kinetoplastids: a powerful tool for the understanding of the biology and host-pathogen interactions. Infect Genet Evol. 2017;49:273–82.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kima PE. Leishmania molecules that mediate intracellular pathogenesis. Microbes Infect. 2014;16(9):721–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Beattie L, d’El-Rei Hermida M, Moore JW, Maroof A, et al. A transcriptomic network identified in uninfected macrophages responding to inflammation controls intracellular pathogen survival. Cell Host Microbe. 2013;14(3):357–68.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fernandes MC, Dillon LA, Belew AT, Bravo HC. Dual transcriptome profiling of Leishmania-infected human macrophages reveals distinct reprogramming signatures. MBio. 2016;7(3):e00027.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Christensen SM, Dillon LA, Carvalho LP, Passos S, et al. Meta-transcriptome profiling of the human-Leishmania braziliensis cutaneous lesion. PLoS Negl Trop Dis. 2016;10(9):e0004992.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kumar D, Singh R, Bhandari V, Kulshrestha A, et al. Biomarkers of antimony resistance: need for expression analysis of multiple genes to distinguish resistance phenotype in clinical isolates of Leishmania donovani. Parasitol Res. 2012;111(1):223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Schriefer A, Wilson ME, Carvalho EM. Recent developments leading toward a paradigm switch in the diagnostic and therapeutic approach to human leishmaniasis. Curr Opin Infect Dis. 2008;21(5):483–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Braun P, Tasan M, Dreze M, Barrios-Rodiles M, et al. An experimentally derived confidence score for binary protein-protein interactions. Nat Methods. 2009;6(1):91–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gupta SK, Gross R, Dandekar T. An antibiotic target ranking and prioritization pipeline combining sequence, structure and network-based approaches exemplified for Serratia marcescens. Gene. 2016;591(1):268–78.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kaltdorf M, Srivastava M, Gupta SK, Liang C, et al. Systematic identification of anti-fungal drug targets by a metabolic network approach. Front Mol Biosci. 2016;3:22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Walker DM, Oghumu S, Gupta G, McGwire BS, et al. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci. 2014;71(7):1245–63.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Remmele CW, Luther CH, Balkenhol J, Dandekar T, et al. Integrated inference and evaluation of host-fungi interaction networks. Front Microbiol. 2015;6:764.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kotlyar M, Pastrello C, Pivetta F, Lo Sardo A, et al. In silico prediction of physical protein interactions and characterization of interactome orphans. Nat Methods. 2015;12(1):79–84.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bader JS, Chaudhuri A, Rothberg JM, Chant J. Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol. 2004;22(1):78–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Lieke T, Nylen S, Eidsmo L, McMaster WR, et al. Leishmania surface protein gp63 binds directly to human natural killer cells and inhibits proliferation. Clin Exp Immunol. 2008;153(2):221–30.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2.0: a curated database for host-pathogen interactions. Database. 2016;2016:baw103.  https://doi.org/10.1093/database/baw103.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Durmus Tekir S, Cakir T, Ardic E, Sayilirbas AS, et al. PHISTO: pathogen-host interaction search tool. Bioinformatics. 2013;29(10):1357–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rezende AM, Folador EL, Resende D de M, Ruiz JC. Computational prediction of protein-protein interactions in Leishmania predicted proteomes. PLoS One. 2012;7(12):e51304.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gazestani VH, Nikpour N, Mehta V, Najafabadi HS, et al. A protein complex map of Trypanosoma brucei. PLoS Negl Trop Dis. 2016;10(3):e0004533.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Akhoon BA, Slathia PS, Sharma P, Gupta SK, et al. In silico identification of novel protective VSG antigens expressed by Trypanosoma brucei and an effort for designing a highly immunogenic DNA vaccine using IL-12 as adjuvant. Microb Pathog. 2011;51(1–2):77–87.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366(9496):1561–77.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rezvan H, Moafi M. An overview on Leishmania vaccines: a narrative review article. Vet Res Forum. 2015;6(1):1–7.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kedzierski L. Leishmaniasis vaccine: where are we today? J Glob Infect Dis. 2010;2(2):177–85.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ahuja SS, Reddick RL, Sato N, Montalbo E, et al. Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection. J Immunol. 1999;163(7):3890–7.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Gupta SK, Smita S, Sarangi AN, Srivastava M, et al. In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis serogroup B--a clue for vaccine development. Vaccine. 2010;28(43):7092–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Costa CH, Peters NC, Maruyama SR, de Brito EC Jr, et al. Vaccines for the leishmaniases: proposals for a research agenda. PLoS Negl Trop Dis. 2011;5(3):e943.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10(10):1104–10.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Brito RC, Guimaraes FG, Velloso JP, Correa-Oliveira R, et al. Immunoinformatics features linked to Leishmania vaccine development: data integration of experimental and in silico studies. Int J Mol Sci. 2017;18(2)Google Scholar
  98. 98.
    Del Tordello E, Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct Genomics. 2013;12(4):328–40.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Gorringe AR, Pajon R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother. 2012;8(2):174–83.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Martin NG, Snape MD. A multicomponent serogroup B meningococcal vaccine is licensed for use in Europe: what do we know, and what are we yet to learn? Expert Rev Vaccines. 2013;12(8):837–58.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Gupta SK, Srivastava M, Akhoon BA, Smita S, et al. Identification of immunogenic consensus T-cell epitopes in globally distributed influenza-A H1N1 neuraminidase. Infect Genet Evol. 2011;11(2):308–19.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Gupta SK, Singh A, Srivastava M, Gupta SK, et al. In silico DNA vaccine designing against human papillomavirus (HPV) causing cervical cancer. Vaccine. 2009;28(1):120–31.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ranjbar MM, Gupta SK, Ghorban K, Nabian S, et al. Designing and modeling of complex DNA vaccine based on tropomyosin protein of Boophilus genus tick. Appl Biochem Biotechnol. 2015;175(1):323–39.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Gupta SK, Srivastava M, Akhoon BA, Gupta SK, et al. In silico accelerated identification of structurally conserved CD8+ and CD4+ T-cell epitopes in high-risk HPV types. Infect Genet Evol. 2012;12(7):1513–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Baloria U, Akhoon BA, Gupta SK, Sharma S, et al. In silico proteomic characterization of human epidermal growth factor receptor 2 (HER-2) for the mapping of high affinity antigenic determinants against breast cancer. Amino Acids. 2012;42(4):1349–60.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Singh KP, Verma N, Akhoon BA, Bhatt V, et al. Sequence-based approach for rapid identification of cross-clade CD8+ T-cell vaccine candidates from all high-risk HPV strains. 3 Biotech. 2016;6(1):39.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Luo H, Lin Y, Gao F, Zhang CT, et al. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res. 2014;42(Database issue):D574–80.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Ravooru N, Ganji S, Sathyanarayanan N, Nagendra HG. In silico analysis of hypothetical proteins unveils putative metabolic pathways and essential genes in Leishmania donovani. Front Genet. 2014;5:291.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Zirkel J, Cecil A, Schäfer F, Rahlfs S, et al. Analyzing thiol-dependent redox networks in the presence of methylene blue and other antimalarial agents with RT-PCR-supported in silico modeling. Bioinform Biol Insights. 2012;6:287–302.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Akhoon BA, Gupta SK, Dhaliwal G, Srivastava M, et al. Virtual screening of specific chemical compounds by exploring E.Coli NAD+−dependent DNA ligase as a target for antibacterial drug discovery. J Mol Model. 2011;17(2):265–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Srivastava M, Gupta SK, Abhilash PC, Singh N. Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model. 2012;18(7):2971–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Srivastava M, Akhoon BA, Gupta SK, Gupta SK. Development of resistance against blackleg disease in Brassica oleracea var. botrytis through in silico methods. Fungal Genet Biol. 2010;47(10):800–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Akhoon BA, Gupta SK, Verma V, Dhaliwal G, et al. In silico designing and optimization of anti-breast cancer antibody mimetic oligopeptide targeting HER-2 in women. J Mol Graph Model. 2010;28(7):664–9.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Akhoon BA, Singh KP, Varshney M, Gupta SK, et al. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods. PLoS One. 2014;9(10):e110041.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gupta SK, Gupta SK, Smita S, Srivastava M, et al (2011) Computational analysis and modeling the effectiveness of ‘Zanamivir’ targeting neuraminidase protein in pandemic H1N1 strains. Infect Genet Evol 11 (5):1072–1082.Google Scholar
  117. 117.
    Song CM, Lim SJ, Tong JC. Recent advances in computer-aided drug design. Brief Bioinform. 2009;10(5):579–91.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694–718.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev. 2014;66(1):334–95.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Field MC, Horn D, Fairlamb AH, Ferguson MA, et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol. 2017;15(4):217–31.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sundar S, Sinha PK, Rai M, Verma DK, et al. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet. 2011;377(9764):477–86.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Coulibaly B, Pritsch M, Bountogo M, Meissner PE, et al. Efficacy and safety of triple combination therapy with artesunate-amodiaquine-methylene blue for falciparum malaria in children: a randomized controlled trial in Burkina Faso. J Infect Dis. 2015;211(5):689–97.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kunz M, Liang C, Nilla S, Cecil A, et al. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development. Database. 2016;2016:baw041.  https://doi.org/10.1093/database/baw041.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Fliri AF, Loging WT, Volkmann RA. Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci. 2010;31(11):547–55.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Iorio F, Saez-Rodriguez J, di Bernardo D. Network based elucidation of drug response: from modulators to targets. BMC Syst Biol. 2013;7:139.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioinformatics, BiocenterUniversity of WürzburgWürzburgGermany
  2. 2.EMBL Heidelberg, BioComputing UnitHeidelbergGermany

Personalised recommendations