Advertisement

Functional Analysis of Leishmania Membrane (Non-ABC) Transporters Involved in Drug Resistance

  • Scott M. Landfear
Chapter

Abstract

Leishmania parasites rely heavily upon membrane transport proteins to deliver essential nutrients from their hosts to the interior of the parasite. Some of these transporters also serve as routes for uptake of drugs used for treatment of leishmaniasis or experimental drugs with potential for development of novel anti-leishmanial therapies. Hence, mutations within the coding regions of such permeases or alterations in the expression of the carrier proteins can confer drug resistance upon the parasites. This chapter reviews the current level of knowledge regarding several classes of membrane transporters known to play roles in uptake or sensitivity to drugs. The increasing knowledge of the “permeome,” provided by complete genome sequences of several Leishmania species, has advanced considerably our knowledge of how nutrients and drugs or other cytotoxic compounds enter these pathogenic protozoa. Recent genome-wide approaches to functional analysis promise to further our understanding of transporters as determinants of drug sensitivity and resistance.

Keywords

Membrane transport proteins Drug uptake Drug resistance Aquaporins Miltefosine transporter Folate transporters Purine transporters 

Notes

Acknowledgments

Preparation of this review was supported by grants AI25920, AI44138, and AI144822 to the author from the National Institutes of Health.

References

  1. 1.
    Van Winkle LJ. Biomembrane Transport. 15th ed. San Diego: Academic Press; 1999.Google Scholar
  2. 2.
    Ivens AC, Peacock CS, Worthey EA, Murphy L, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436–42.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, et al. Membrane protein structure determination - the next generation. Biochim Biophys Acta. 2014;1838(1 Pt A):78–87.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Vinothkumar KR. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol. 2015;33:103–14.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Goodwin LG, Page JE. A study of the excretion of organic antimonials using a polarographic procedure. Biochem J. 1943;37(2):198–209.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Goodwin LG. Pentostam (sodium stibogluconate); a 50-year personal reminiscence. Trans R Soc Trop Med Hyg. 1995;89(3):339–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19(1):111–26.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol. 2004;5(9):687–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA. 1991;88(24):11110–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Stroud RM, Savage D, Miercke LJ, Lee JK, et al. Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. FEBS Lett. 2003;555(1):79–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Fu DA, Libson A, Miercke LJ, Weitzman C, et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science. 2000;290(5491):481–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Murata K, Mitsuoka K, Hirai T, Walz T, et al. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407(6804):599–605.PubMedCrossRefGoogle Scholar
  13. 13.
    Sui H, Han BG, Lee LJ, Walian P, et al. Structural basis of water-specific transport through the AQP1 water channel. Nature. 2001;414(6866):872–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Newby ZE, O’Connell J III, Robles-Colmenares Y, Khademi S, et al. Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol. 2008;15(6):619–25.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sanders OI, Rensing C, Kuroda M, Mitra B, et al. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol. 1997;179(10):3365–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wysocki R, Chery CC, Wawrzycka D, Van Hulle M, et al. The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol. 2001;40(6):1391–401.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA. 2002;99(9):6053–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Ramirez-Solis A, Mukopadhyay R, Rosen BP, Stemmler TL. Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg Chem. 2004;43(9):2954–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gourbal B, Sonuc N, Bhattacharjee H, Legare D, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279(30):31010–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Plourde M, Ubeda JM, Mandal G, Monte-Neto RL, et al. Generation of an aquaglyceroporin AQP1 null mutant in Leishmania major. Mol Biochem Parasitol. 2015;201(2):108–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, et al. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol. 2007;65(4):1006–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Leslie G, Barrett M, Burchmore R. Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol. 2002;102(2):117–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, et al. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57(6):1690–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Decuypere S, Rijal S, Yardley V, De Doncker S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49(11):4616–21.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Maharjan M, Singh S, Chatterjee M, Madhubala R. Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am J Trop Med Hyg. 2008;79(1):69–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Mandal S, Maharjan M, Singh S, Chatterjee M, et al. Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. J Antimicrob Chemother. 2010;65(3):496–507.PubMedCrossRefGoogle Scholar
  27. 27.
    Legare D, Richard D, Mukhopadhyay R, Stierhof YD, et al. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276(28):26301–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Grondin K, Haimeru A, Mukhopadyyay R, Rosen BP, et al. Co-amplification of the γ-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J. 1997;16:3057–65.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dey S, Ouellette M, Lightbody J, Papadopoulou B, et al. An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA. 1996;93(5):2192–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Mandal G, Mandal S, Sharma M, Charret KS, et al. Species-specific antimonial sensitivity in Leishmania is driven by post-transcriptional regulation of AQP1. PLoS Negl Trop Dis. 2015;9(2):e0003500.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mandal G, Sharma M, Kruse M, Sander-Juelch C, et al. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase. Mol Microbiol. 2012;85(6):1204–18.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cunningham ML, Beverley SM. Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Mol Biochem Parasitol. 2001;113:199–213.PubMedCrossRefGoogle Scholar
  33. 33.
    Vickers TJ, Beverley SM. Folate metabolic pathways in Leishmania. Essays Biochem. 2011;51:63–80.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Coderre JA, Beverley SM, Schimke RT, Santi DV. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci USA. 1983;80(8):2132–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Beverley SM, Ellenberger TE, Cordingley JS. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci USA. 1986;83(8):2584–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Dewes H, Ostergaard HL, Simpson L. Impaired drug uptake in methotrexate resistant Crithidia fasciculata without changes in dihydrofolate reductase activity or gene amplification. Mol Biochem Parasitol. 1986;19(2):149–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Kaur K, Coons T, Emmett K, Ullman B. Methotrexate-resistant Leishmania donovani genetically deficient in the folate-methotrexate transporter. J Biol Chem. 1988;263:7020–8.PubMedGoogle Scholar
  38. 38.
    Ellenberger TE, Beverley SM. Biochemistry and regulation of folate and methotrexate transport in Leishmania major. J Biol Chem. 1987;262:10053–8.PubMedGoogle Scholar
  39. 39.
    Callahan HL, Beverley SM. A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. J Biol Chem. 1992;267:24165–8.PubMedGoogle Scholar
  40. 40.
    Papadopoulou B, Roy G, Ouellette M. Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methotrexate resistant Leishmania. Nucleic Acids Res. 1993;21(18):4305–12.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Papadopoulou B, Roy G, Mourad W, Leblanc E, et al. Changes in folate and pterin metabolism after disruption of the Leishmania H locus short chain dehydrogenase gene. J Biol Chem. 1994;269(10):7310–5.PubMedGoogle Scholar
  42. 42.
    Kündig C, Haimeur A, Legare D, Papadopoulou B, et al. Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO J. 1999;18:2342–51.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Myler PJ, Venkataraman GM, Lodes MJ, Stuart KD. A frequently amplified region in Leishmania contains a gene conserved in prokaryotes and eukaryotes. Gene1. 1994;48(2):187–93.CrossRefGoogle Scholar
  44. 44.
    Segovia M, Ortiz G. LD1 amplifications in Leishmania. Parasitol Today. 1997;13(9):342–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Lemley C, Yan S, Dole VS, Madhubala R, et al. The Leishmania donovani LD1 locus gene ORFG encodes a biopterin transporter (BT1). Mol Biochem Parasitol. 1999;104:93–105.PubMedCrossRefGoogle Scholar
  46. 46.
    Richard D, Kundig C, Ouellette M. A new type of high affinity folic acid transporter in the protozoan parasite Leishmania and deletion of its gene in methotrexate-resistant cells. J Biol Chem. 2002;277(33):29460–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Richard D, Leprohon P, Drummelsmith J, Ouellette M. Growth phase regulation of the main folate transporter of Leishmania infantum and its role in methotrexate resistance. J Biol Chem. 2004;279(52):54494–501.PubMedCrossRefGoogle Scholar
  48. 48.
    Dridi L, Haimeur A, Ouellette M. Structure-function analysis of the highly conserved charged residues of the membrane protein FT1, the main folic acid transporter of the protozoan parasite Leishmania. Biochem Pharmacol. 2010;79(1):30–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Eudes A, Kunji ER, Noiriel A, Klaus SM, et al. Identification of transport-critical residues in a folate transporter from the folate-biopterin transporter (FBT) family. J Biol Chem. 2010;285(4):2867–75.PubMedCrossRefGoogle Scholar
  50. 50.
    Dridi L, Ahmed Ouameur A, Ouellette M. High affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem. 2010;285(26):19767–75.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Phelouzat M, Basselin M, Lawrence F, Robert-Gero M. Sinefungin shares AdoMet-uptake system to enter Leishmania donovani promastigotes. Biochem J. 1995;305:133–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Goldberg B, Yarlett N, Sufrin J, Lloyd D, et al. A unique transporter of S-adenosylmethionine in African trypanosomes. FASEB J. 1997;11:256–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Hammond DJ, Gutteridge WE. Purine and pyrimidine metabolism in the Trypanosomatidae. Mol Biochem Parasitol. 1984;13(3):243–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Carter NS, Yates P, Arendt CS, Boitz JM, et al. Purine and pyrimidine metabolism in Leishmania. Adv Exp Med Biol. 2008;625:141–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Marr JJ, Berens RL, Nelson DJ. Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta. 1978;544(2):360–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Iovannisci DM, Ullman B. High efficiency plating method for Leishmania promastigotes in semidefined or completely-defined medium. J Parasitol. 1983;69(4):633–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Boitz JM, Ullman B, Jardim A, Carter NS. Purine salvage in Leishmania: complex or simple by design? Trends Parasitol. 2012;28(8):345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ullman B. Pyrazolopyrimidine metabolism in parasitic protozoa. Pharm Res. 1984;1:194–203.PubMedCrossRefGoogle Scholar
  59. 59.
    Marr JJ. Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J Lab Clin Med. 1991;118:111–9.PubMedGoogle Scholar
  60. 60.
    Martinez S, Looker DL, Berens RL, Marr JJ. The synergistic action of pyrazolopyrimidines and pentavalent antimony against Leishmania donovani and L. braziliensis. Am J Trop Med Hyg. 1988;39(3):250–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Martinez S, Marr JJ. Allopurinol in the treatment of American cutaneous leishmaniasis. N Engl J Med. 1992;326:741–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Carson DA, Chang KP. Phosphorylation and anti-leishmanial activity of formycin B. Bioch Biophys Res Comm. 1981;100:1377–83.CrossRefGoogle Scholar
  63. 63.
    Aronow B, Kaur K, McCartan K, Ullman B. Two high affinity nucleoside transporters in Leishmania donovani. Mol Biochem Parasitol. 1987;22:29–37.PubMedCrossRefGoogle Scholar
  64. 64.
    Vasudevan G, Carter NS, Drew ME, Beverley SM, et al. Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proc Natl Acad Sci USA. 1998;95:9873–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Carter NS, Drew ME, Sanchez M, Vasudevan G, et al. Cloning of a novel inosine-guanosine transporter gene from Leishmania donovani by functional rescue of a transport-deficient mutant. J Biol Chem. 2000;275:20935–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Iovannisci DM, Kaur K, Young L, Ullman B. Genetic analysis of nucleoside transport in Leishmania donovani. Mol Cell Biol. 1984;4:1013–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    King AE, Ackley MA, Cass CE, Young JD, et al. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci. 2006;27(8):416–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Valdés R, Liu W, Ullman B, Landfear SM. Comprehensive examination of charged intramembrane residues in a nucleoside transporter. J Biol Chem. 2006;281(32):22647–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Arastu-Kapur S, Ford E, Ullman B, Carter NS. Functional analysis of an inosine-guanosine transporter from Leishmania donovani: the role of conserved residues, aspartate 389 and arginine 393. J Biol Chem. 2003;278(35):33327–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Arastu-Kapur S, Arendt CS, Purnat T, Carter NS, et al. Second-site suppression of a nonfunctional mutation within the Leishmania donovani inosine-guanosine transporter. J Biol Chem. 2005;280(3):2213–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Huang G, Ulrich PN, Storey M, Johnson D, et al. Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathog. 2014;10(12):e1004555.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Saier Jr MH, Beatty T, Goffeau A, Harley KT, et al. The major facilitator superfamily. J Mol Microbiol Biotechnol. 1999;1(2):257–79.Google Scholar
  73. 73.
    Guan L, Kaback HR. Lessons from lactose permease. Annu Rev Biophys Biomol Struct. 2006;35:67–91.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Das R, Baker D. Macromolecular modeling with rosetta. Annu Rev Biochem. 2008;77:363–82.PubMedCrossRefGoogle Scholar
  75. 75.
    Kavanaugh MP. Neurotransmitter transport: models in flux. Proc Natl Acad Sci USA. 1998;95:12737–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Valdés R, Shinde U, Landfear SM. Cysteine cross-linking defines the extracellular gate for the Leishmania donovani nucleoside transporter 1.1 (LdNT1.1). J Biol Chem. 2012;287(53):44036–45.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Valdés R, Elferich J, Shinde U, Landfear SM. Identification of the intracellular gate for a member of the equilibrative nucleoside transporter (ENT) family. J Biol Chem. 2014;289:8799–809.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zilberstein D, Philosoph H, Gepstein A. Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Mol Biochem Parasitol. 1989;36:109–18.PubMedCrossRefGoogle Scholar
  79. 79.
    Stein A, Vasudevan G, Carter N, Ullman B, et al. Equilibrative nucleoside transporter family members from Leishmania donovani are electrogenic proton symporters. J Biol Chem. 2003;278:35127–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Ortiz D, Sanchez MA, Koch HP, Larsson HP, et al. An acid-activated nucleobase transporter from Leishmania major. J Biol Chem. 2009;284:16164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hansen BD, Perez-Arbelo J, Wlakony JF, Hendricks LD. The specificity of purine base and nucleoside uptake in promastigotes of Leishmania braziliensis panamensis. Parasitology. 1982;85:271–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Al-Salabi MI, Wallace LMJ, de Koning HP. A Leishmania major nucleobase transporter responsible for allopurinol uptake is a functional homolog of the Trypanosoma brucei H2 transporter. Mol Pharmacol. 2003;63:814–20.PubMedCrossRefGoogle Scholar
  83. 83.
    Al-Salabi MI, de Koning HP. Purine nucleobase transport in amastigotes of Leishmania mexicana: involvement in allopurinol uptake. Antimicrob Agents Chemother. 2005;49(9):3682–9.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Sanchez M, Tryon R, Vasudevan G, Landfear SM. Functional expression and characterisation of a purine nucleobase transporter gene from Leishmania major. Mol Membrane Biol. 2004;21:11–8.CrossRefGoogle Scholar
  85. 85.
    Ortiz D, Sanchez MA, Pierce S, Herrmann T, et al. Molecular genetic analysis of purine nucleobase transport in Leishmania major. Mol Microbiol. 2007;64:1228–43.PubMedCrossRefGoogle Scholar
  86. 86.
    Antoine JC, Prina E, Jouanne C, Bongrand P. Parasitophorous vacuoles of Leishmania amazonensis-infected macrophages maintain an acidic pH. Infect Immun. 1990;58:779–87.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Kerby DR, Detke S. Reduced purine accumulation is encoded on an amplified DNA in Leishmania mexicana amazonensis resistant to toxic nucleosides. Mol Biochem Parasitol. 1993;60:171–85.PubMedCrossRefGoogle Scholar
  88. 88.
    Detke S. Identification of a transcription factor like protein at the TOR locus in Leishmania mexicana amazonensis. Mol Biochem Parasitol. 1997;90(2):505–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Detke S. TOR-induced resistance to toxic adenosine analogs in Leishmania brought about by the internalization and degradation of the adenosine permease. Exp Cell Res. 2007;313(9):1963–78.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African tryapnosome. Genome Res. 2011;21:915–24.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Alsford S, Eckert S, Baker N, Glover L, et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. 2012;482(7384):232–6.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Song J, Baker N, Rothert M, Henke B, et al. Pentamidine is not a permeant but a Nanomolar inhibitor of the Trypanosoma brucei Aquaglyceroporin-2. PLoS Pathog. 2016;12(2):e1005436.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lye LF, Owens K, Shi H, Murta SM, et al. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6(10):e1001161.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gazanion E, Fernandez-Prada C, Papadopoulou B, Leprohon P, et al. Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci USA. 2016;113(21):E3012–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and ImmunologyOregon Health & Science UniversityPortlandUSA

Personalised recommendations