Leishmaniasis: The Biology of a Parasite

  • Emilia Díaz
  • Alicia Ponte-Sucre


One of the main challenges of therapeutic tools for the treatment of parasitic diseases, including leishmaniasis, is the interwinned relationship between therapeutic failure and drug resistance. In fact, some field parasites might be naturally resistant to classical drugs and additionally, current therapies may induce drug resistance. In fact, treatment failure in leishmaniasis has multiple causes. Some are related to drugs, such as pharmacokinetic properties, toxicity, use of sub-optimal doses, or high cost of treatment. Parasite-related grounds include chemo-resistance and tolerance. Last but not least, the host plays a fundamental role in this situation since the patient's immune status and the risk of re-infection if living in an endemic region might also contribute to therapeutic failure. All these features are at least partially responsible for the disappointing persistence and re-emergence of leishmaniasis, as well as its death and disability-adjusted life year toll worldwide. A better understanding of the disease itself and of drug resistance, its molecular basis, its consequences, and the definition of possible paths for better treatments may help improve this depressing picture. In the present volume experts in the field cover current knowledge and future trends of these and many other aspects of drug resistance in Leishmania. This initial chapter offers a general introduction to the biology of the parasite, a piece of information fundamental for the topics included in the book and the comprehension of challenges we currently face for this disease.



The authors are grateful for the financing support received from the Coordination for Research, Faculty of Medicine, UCV, and the Council for Scientific and Humanistic Research (CDCH), Universidad Central de Venezuela. Likewise, they are grateful for the support conferred by the Alexander von Humboldt Foundation and the University of Würzburg, Germany, to Alicia Ponte-Sucre.


  1. 1.
    Pace D. Leishmaniasis. J Infect. 2014;69(1):S10–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, et al. The epidemiology and control of leishmaniasis in Andean countries. Cad Saude Publica. 2000;16:925–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rotureau B. Are new world leishmaniases becoming anthroponoses? Med Hypotheses. 2006;67:1235–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Ready PD. Leishmaniasis emergence in Europe. Euro Surveill. 2010;11:19505.Google Scholar
  6. 6.
    World Health Organization (WHO, 2016) Weekly epidemiological record., 2016, 91, 285–296.
  7. 7.
    Karimkhani C, Wanga V, Coffeng LE, Naghavi P, et al. Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;6:584–91. Scholar
  8. 8.
    Alvar J, Vélez ID, Bern C, Herrero M, et al. Leishmaniasis worldwide and global estimates of its incidence. WHO Leishmaniasis Control Team. PLoS One. 2012;7(5):e35671.PubMedGoogle Scholar
  9. 9.
    World Health Organization Technical Report Series 949 (2015) Control of the leishmaniasis 2010.
  10. 10.
    Ready PD. Epidemiology of visceral leishmaniasis. Clin Epidemiol. 2014;6:147–54.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Georgiadou SP, Makaritsis KP, Dalekos GN. Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. J Transl Int Med. 2015;3(2):43–50.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Alvar J, Aparicio P, Aseffa A, Den Boer M, et al. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008;21:334–59.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Malafaia G. Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol. 2009;31:587–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Saporito L, Giammanco G, De Grazia S, Colomba C. Visceral leishmaniasis: host–parasite interactions and clinical presentation in the immunocompetent and in the immunocompromised host. Int J Infect Dis. 2013;17:e572–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Sharma U, Singh S. Immunobiology of leishmaniasis. Indian J Exp Biol. 2009;47:412–23.PubMedGoogle Scholar
  17. 17.
    Ameen M. Cutaneous and mucocutaneous leishmaniasis: emerging therapies and progress in disease management. Expert Opin Pharmacother. 2010;11:557–69.CrossRefPubMedGoogle Scholar
  18. 18.
    Romero GA, Boelaert M. Control of visceral leishmaniasis in Latin America a systematic review. PLoS Negl Trop Dis. 2010;4:e584.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ponte-Sucre A. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis. 2003;2:14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cattand P, Desjeux P, Guzmán MJ, Jannin J, et al. Tropical diseases lacking adequate control measures: dengue, leishmaniasis, and African trypanosomiasis. In: Disease control priorities in developing countries. 2nd ed. New York: Oxford University Press; 2006. p. 451–66.Google Scholar
  21. 21.
    Feliciangeli MD, Rabinovich J. Abundance of Lutzomyia ovallesi but not Lu. gomezi (Diptera: Psychodidae) correlated with cutaneous leishmaniasis incidence in north-central Venezuela. Med Vet Entomol. 1998;12:121–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, et al. The epidemiology and control of leishmaniasis in Andean countries. Cad Saude Publica. 2000;16(4):925–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Curtis CF. Personal protection methods against vectors of disease. Rev Med Vet. 1992;80:543–53.Google Scholar
  24. 24.
    Thakur CP. Leishmaniasis research, the challenges ahead. Indian J Med Res. 2006;123:193–4.PubMedGoogle Scholar
  25. 25.
    Lerner EA, Ribeiro JM, Nelson RJ, Lerner MR. Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand-fly Lutzomyia longipalpis. J Biol Chem. 1991;261:11234–6.Google Scholar
  26. 26.
    Castro-Sousa F, Paranhos-Silva M, Sherlock I, Paixão MS, et al. Dissociation between vasodilation and Leishmania infection-enhancing effects of sand fly saliva and maxadilan. Mem Inst Oswaldo Cruz. 2001;96:997–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Belkaid Y, Kamhawi S, Modo G, Valenzuela J, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva pre-exposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188:1941–53.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Delgado O, Guevara P, Silva S, Belfort E, et al. Follow up of human accidental infection by Leishmania braziliensis using conventional immunologic techniques and polymerase chain reaction. Am J Trop Med Hyg. 1996;51:267–72.CrossRefGoogle Scholar
  29. 29.
    Bates PA, Rogers ME. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med. 2004;4:601–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Peters NC, Egen JG, Secundino N, Debrabant A, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321:970–4.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ritter U, Frischknecht F, van Zandbergen G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009;25:505–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Killick-Kendrick R, Wallbanks KR, Molyneux DH, Lavin DR. The ultrastructure of Leishmania major in the foregut and proboscis of Phlebotomus papatasi. Parasitol Res. 1988;74(6):586–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Ridley D. The pathogenesis of cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 1999;73:156–60.Google Scholar
  34. 34.
    Chang KP, Reed SG, McGwire BS, Soong L. Leishmania model for microbial virulence: the relevance of parasite multiplication and patho-antigenicity. Acta Trop. 2003;85:375–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Wheeler RJ. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol. 2017;13(1):e1005353.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gadelha C, Wickstead B, Gull K. Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton. 2007;64:629–43.CrossRefPubMedGoogle Scholar
  37. 37.
    Rotureau B, Morales MA, Bastin P, Spath G. The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signaling and development? Cell Microbiol. 2009;11(5):710–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Forestier CL, Machu C, Loussert C, Pescher P, et al. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe. 2011;9:319–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Díaz E, Köhidai L, Ríos A, Vanegas O, et al. Leishmania braziliensis: cytotoxic, cytostatic and chemotactic effects of poly-lysine-methotrexate-conjugates. Exp Parasitol. 2013;135(1):134–41.CrossRefPubMedGoogle Scholar
  40. 40.
    Ponte-Sucre A. Leishmaniasis, the biology of a parasite. In: Ponte-Sucre A, Diaz E, Padrón-Nieves M, editors. Drug resistance in Leishmania parasites. Consequences, molecular mechanisms, and possible treatments. Wien: Springer; 2013. p. 1–12.CrossRefGoogle Scholar
  41. 41.
    de Toledo JS, Vasconcelos EJR, Ferreira TR, Cruz AK. Using genomic information to understand Leishmania biology. Open Parasitol J. 2010;4:156–66.CrossRefGoogle Scholar
  42. 42.
    Akopyants NS, Kimblin N, Secundino N, Patrick R, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rougeron V, De Meeûs T, Hide M, Waleckx E, et al. Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci USA. 2009;106:10224–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Sterkers Y, Crobu L, Lachaud L, Pagès M, et al. Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol. 2014;30(9):429–35.CrossRefPubMedGoogle Scholar
  45. 45.
    Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28(9):370–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39:839–47.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Downing T, Imamura H, Decuypere S, Clark TG, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21(12):2143–56. Scholar
  48. 48.
    Rogers MB, Hilley JD, Dickens NJ, Wilkes J, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21(12):2129–42. Scholar
  49. 49.
    Real F, Vidal RO, Carazzolle MF, Mondego JM, et al. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res. 2013;20(6):567–81. Scholar
  50. 50.
    Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, et al. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep. 2015;5(8550).
  51. 51.
    Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31(3):100–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kohidai L. Chemotaxis as an expression of communication of Tetrahymena. In: Witzany G, Nowacki M, editors. Biocommunication of ciliates. Dordrecht: Springer; 2016. p. 65–82.Google Scholar
  53. 53.
    Diaz E, Zacarias AK, Pérez S, Vanegas O, et al. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis. Parasitology. 2015;142(13):1621–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Bray RS. Leishmania: chemotaxic responses of promastigotes and macrophages in vitro. J Protozool. 1983;30:322–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Leslie G, Barrett M, Burchmore R. Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol. 2002;102:117–20.CrossRefPubMedGoogle Scholar
  56. 56.
    Díaz E, Köhidai L, Ríos A, Vanegas O, et al. Leishmania braziliensis: cytotoxic and chemotactic effects of branched chain polypeptide conjugates with poly [L-Lysine] backbone. Exp Parasitol. 2013;135:134–41.CrossRefPubMedGoogle Scholar
  57. 57.
    de Menezes JP, Koushik A, Das S, Guven C, et al. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins. Cell Microbiol. 2017;19(3).
  58. 58.
    Petropolis DB, Rodrigues JC, Viana NB, Pontes B, et al. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions. Peer J. 2014;2:e317.CrossRefPubMedGoogle Scholar
  59. 59.
    Fatoux-Ardore M, Peysselon F, Weiss A, Bastien P, et al. Large scale investigation of Leishmania interaction networks with host extra cellular matrix by surface plasmon resonance imaging. Infect Immun. 2014;(2):594–606.Google Scholar
  60. 60.
    Rochael NC, Lima LG, Oliveira SM, Barcinski MA, et al. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva. Mem Inst Oswaldo Cruz. 2013;108:679–85.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pozzo LY, Fontes A, de Thomaz AA, Santos BS, et al. Studying taxis in real time using optical tweezers: applications for Leishmania amazonensis parasites. Micron. 2009;40(5–6):617–20.CrossRefPubMedGoogle Scholar
  62. 62.
    Bogdan C, Gessner A, Solbach W, Röllinghoff M. Invasion, control and persistence of Leishmania parasites. Curr Opin Immunol. 1996;8:517–25.CrossRefPubMedGoogle Scholar
  63. 63.
    Bañuls AL, Hide M, Tibayrenc M. Evolutionary genetics and molecular diagnosis of Leishmania species. Trans R Soc Trop Med Hyg. 2002;96:S9–S13.CrossRefPubMedGoogle Scholar
  64. 64.
    Smith DF, Peacock CS, Cruz AK. Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol. 2007;37:1173–86.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schönian G, Mauricio I, Gramiccia M, Cañavate C, et al. Leishmaniases in the Mediterranean in the era of molecular epidemiology. Trends Parasitol. 2008;24:135–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Verma S, Singh R, Sharma V, Bumb RA, et al. Development of a rapid loop-mediated isothermal amplification assay for diagnosis and assessment of cure of Leishmania infection. BMC Infect Dis. 2017;17(1):223.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tavares CA, Fernandes AP, Melo MN. Molecular diagnosis of leishmaniasis. Expert Rev Mol Diagn. 2003;3:657–67.CrossRefPubMedGoogle Scholar
  68. 68.
    Sundar S, Agrawal S, Pai K, Chance M, et al. Detection of Leishmania antigen in the urine of patients with visceral leishmaniasis by a latex agglutination test. Am J Trop Med Hyg. 2005;73:269–71.PubMedCrossRefGoogle Scholar
  69. 69.
    Salotra P, Singh R. Challenges in the diagnosis of post kala-azar dermal leishmaniasis. Indian J Med Res. 2006;123:295–310.PubMedGoogle Scholar
  70. 70.
    Kassi M, Kasi PM, Marri SM, Tareen I, et al. Vector control in cutaneous leishmaniasis of the old world: a review of literature. Dermatol Online J. 2008;14:1.PubMedGoogle Scholar
  71. 71.
    Alten B, Caglar SS, Kaynas S, Simsek FM. Evaluation of protective efficacy of K-OTAB impregnated bednets for cutaneous leishmaniasis control in Southeast Anatolia, Turkey. J Vector Ecol. 2003;28:53–64.PubMedGoogle Scholar
  72. 72.
    Quinnell RJ, Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136:1915–34.CrossRefPubMedGoogle Scholar
  73. 73.
    Murray H. Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob Agents Chemother. 2001;45:2185–97.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Melby P. Recent developments in leishmaniasis. Curr Opin Infect Dis. 2002;15:485–90.CrossRefPubMedGoogle Scholar
  75. 75.
    Palumbo E. Current treatment for cutaneous leishmaniasis: a review. Am J Ther. 2009;16:178–82.CrossRefPubMedGoogle Scholar
  76. 76.
    Mitropoulos P, Konidas P, Durkin-Konidas M. New world cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J Am Acad Dermatol. 2010;63(2):309–22.CrossRefPubMedGoogle Scholar
  77. 77.
    Croft SL, Coombs GH. Leishmaniasis: current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Jhingran A, Chawla B, Saxena S, Barrett MP, et al. Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol. 2009;164(2):111–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Bhandari V, Sundar S, Dujardin JC, Salotra P. Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani. Antimicrob Agents Chemother. 2014;58(5):2580–5.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Croft SL, Neal RA, Pendergast W, Chan JH. The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol. 1987;36:2633–6.CrossRefPubMedGoogle Scholar
  81. 81.
    Eibl H, Unger C. Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat Rev. 1990;17:233–42.CrossRefPubMedGoogle Scholar
  82. 82.
    Croft SL. Kinetoplastida: new therapeutic strategies. Parasite. 2008;15:522–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Soto J, Berman J. Treatment of new world cutaneous leishmaniasis with miltefosine. Trans R Soc Trop Med Hyg. 2006;100:S34–40.CrossRefPubMedGoogle Scholar
  84. 84.
    Sundar S, Singh A, Rai M, Prajapati VK, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis. 2012;55(4):543–50.CrossRefPubMedGoogle Scholar
  85. 85.
    Rijal S, Ostyn B, Uranw S, Rai K, et al. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis. 2013;56(11):1530–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Mondelaers A, Sanchez-Cañete MP, Hendrickx S, Eberhardt E, et al. Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS One. 2016;11(4):e0154101.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Srivastava S, Mishra J, Gupta AK, Singh A, et al. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasit Vectors. 2017;10(1):49.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Berman J. Clinical status of agents being developed for leishmaniasis. Expert Opin Investig Drugs. 2005;14:1337–46.CrossRefPubMedGoogle Scholar
  89. 89.
    Loiseau PM, Cojean S, Schrével J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite. 2011;18:115–9.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Singh N, Kumar M, Singh RK. Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med. 2012;5(6):485–97.CrossRefPubMedGoogle Scholar
  91. 91.
    Croft SL, Seifert K, Yardley V. Current scenario of drug development for leishmaniasis. Indian J Med Res. 2006;123(3):399–410.PubMedGoogle Scholar
  92. 92.
    Zerpa O, Ulrich M, Blanco B, Polegre M, et al. Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol. 2007;156:1328–35.CrossRefPubMedGoogle Scholar
  93. 93.
    Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, et al. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem. 2009;16:599–614.CrossRefPubMedGoogle Scholar
  94. 94.
    Croft SL. PKDL – a drug related phenomenon? Indian J Med Res. 2008;128(1):10–1.PubMedGoogle Scholar
  95. 95.
    Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.CrossRefPubMedGoogle Scholar
  96. 96.
    Natera S, Machuca C, Padrón-Nieves M, Romero A, et al. Proficiency of drug-resistant parasites. Int J Antimicrob Agents. 2007;29:637–42.CrossRefPubMedGoogle Scholar
  97. 97.
    Imamura H, Downing T, Van den Broeck F, Sanders MJ, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. elife. 2016;5. pii: e12613.Google Scholar
  98. 98.
    t’Kindt R, Scheltema RA, Jankevics A, Brunker K, et al. Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis. 2010;4:e904.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emilia Díaz
    • 1
  • Alicia Ponte-Sucre
    • 1
  1. 1.Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Escuela Luis RazettiUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations