Advertisement

Joint Multimodal Segmentation of Clinical CT and MR from Hip Arthroplasty Patients

  • Marta Bianca Maria RanziniEmail author
  • Michael Ebner
  • M. Jorge Cardoso
  • Anastasia Fotiadou
  • Tom Vercauteren
  • Johann Henckel
  • Alister Hart
  • Sébastien Ourselin
  • Marc Modat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10734)

Abstract

Magnetic resonance imaging (MRI) is routinely employed to assess muscular response and presence of inflammatory reactions in patients treated with metal-on-metal hip arthroplasty, driving the decision for revision surgery. However, MRI is lacking contrast for bony structures and as a result orthopaedic surgical planning is mostly performed on computed tomography images. In this paper, we combine the complementary information of both modalities into a novel framework for the joint segmentation of healthy and pathological musculoskeletal structures as well as implants on all images. Our processing pipeline is fully automated and was designed to handle the highly anisotropic resolution of clinical MR images by means of super resolution reconstruction. The accuracy of the intra-subject multimodal registration was improved by employing a non-linear registration algorithm with hard constraints on the deformation of bony structures, while a multi-atlas segmentation propagation approach provided robustness to the large shape variability in the population. The suggested framework was evaluated in a leave-one-out cross-validation study on 20 hip sides. The proposed pipeline has potential for the extraction of clinically relevant imaging biomarkers for implant failure detection.

Keywords

Muscoloskeletal imaging Multimodal segmentation Multimodal registration CT MR Arthroplasty 

Notes

Acknowledgements

This work is supported by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging [EP/L016478/1], the Royal National Orthopaedic Hospital NHS Trust, the Department of Healths NIHR-funded Biomedical Research Centre at University College London Hospitals and Innovative Engineering for Health award by the Wellcome Trust [WT101957] and EPSRC [NS/A000027/1], and by Wellcome/EPSRC [203145Z/16/Z].

References

  1. 1.
    UK National Joint Registry: 13th Annual Report (December 2015) (2016)Google Scholar
  2. 2.
    Berber, R., Khoo, M., Cook, E., Guppy, A., Hua, J., Miles, J., Carrington, R., Skinner, J., Hart, A.: Muscle atrophy and metal-on-metal hip implants: a serial MRI study of 74 hips. Acta Orthop. 86(3), 351–357 (2015)CrossRefGoogle Scholar
  3. 3.
    MHRA of the Department of Health: Medical Device Alert. MHRA Database, pp. 1–7 (2012). http://www.mhra.gov.uk
  4. 4.
    Bogner, E., Sofka, C.: CT evaluation of total hip arthroplasty complication: Dissociation of acetabular component. HSS J. 3(1), 112–114 (2007)CrossRefGoogle Scholar
  5. 5.
    Pedoia, V., Majumdar, S., Link, T.: Segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn. Reson. Mater. Phy. 29(2), 207–221 (2016)CrossRefGoogle Scholar
  6. 6.
    Seim, H., Kainmüller, D., Heller, M., Lamecker, H., Zachow, S., Hege, H.C.: Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. In: Proceedings of the 1st Eurographics Conference on Visual Computing for Biomedicine - EG VCBM 2008, pp. 93–100 (2008)Google Scholar
  7. 7.
    Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40763-5_24CrossRefGoogle Scholar
  8. 8.
    Pettersson, J., Knutsson, H., Borga, M.: Automatic hip bone segmentation using non-rigid registration. In: Proceedings of the 18th International Conference on Pattern Recognition - ICPR 2006, vol. 3, pp. 946–949. IEEE (2006)Google Scholar
  9. 9.
    Chu, C., Chen, C., Liu, L., Zheng, G.: FACTS: fully automatic CT segmentation of a hip joint. Ann. Biomed. Eng. 43(5), 1247–1259 (2015)CrossRefGoogle Scholar
  10. 10.
    Prescott, J., Best, T., Swanson, M., Haq, F., Jackson, R., Gurcan, M.: Anatomically anchored template-based level set segmentation: application to quadriceps muscles in MR images from the osteoarthritis initiative. J. Digit. Imaging 24(1), 28–43 (2011)CrossRefGoogle Scholar
  11. 11.
    Ahmad, E., Yap, M., Degens, H., McPhee, J.: Atlas-registration based image segmentation of MRI human thigh muscles in 3D space. In: Mello-Thoms, C.R., Kupinski, M. (eds.) Proceedings of the SPIE Medical Imaging 2014: Image Perception, Observer Performance, and Technology Assessment, vol. 9037, p. 90371L. SPIE (2014)Google Scholar
  12. 12.
    Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14(3), 291–302 (2010)CrossRefGoogle Scholar
  13. 13.
    Klemt, C., Modat, M., Pichat, J., Cardoso, M., Henckel, J., Hart, A., Ourselin, S.: Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty. In: Ourselin, S., Styner, M. (eds.) Proceedings of the SPIE Medical Imaging 2015: Image Processing, vol. 9413, p. 94131M. SPIE (2015)Google Scholar
  14. 14.
    Castro-Mateos, I., Pozo, J., Lazary, A., Frangi, A.: Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations. In: Gimi, B., Krol, A. (eds.) Proceedings of the SPIE Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 9788, p. 97881U. SPIE (2016)Google Scholar
  15. 15.
    Sabah, S., Mitchell, A., Henckel, J., Sandison, A., Skinner, J., Hart, A.: Magnetic resonance imaging findings in painful metal-on-metal hips: a prospective study. J. Arthroplasty 26(1), 71–76 (2011)CrossRefGoogle Scholar
  16. 16.
    Gorgolewski, K., Burns, C., Madison, C., Clark, D., Halchenko, Y., Waskom, M., Ghosh, S.: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinf. 5, 13 (2011)CrossRefGoogle Scholar
  17. 17.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)CrossRefGoogle Scholar
  18. 18.
    Ebner, M., Chouhan, M., Patel, P.A., Atkinson, D., Amin, Z., Read, S., Punwani, S., Taylor, S., Vercauteren, T., Ourselin, S.: Point-spread-function-aware slice-to-volume registration: application to upper abdominal MRI super-resolution. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 3–13. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52280-7_1CrossRefGoogle Scholar
  19. 19.
    Modat, M., Cash, D., Daga, P., Winston, G., Duncan, J., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003 (2014)CrossRefGoogle Scholar
  20. 20.
    Haber, E., Heldmann, S., Modersitzki, J.: A computational framework for image-based constrained registration. Linear Algebra Appl. 431(3–4), 459–470 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ashburner, J., Ridgway, G.: Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6, 197 (2013)CrossRefGoogle Scholar
  22. 22.
    Modat, M., Daga, P., Cardoso, M., Ourselin, S., Ridgway, G., Ashburner, J.: Parametric non-rigid registration using a stationary velocity field. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis - MMBIA 2012, pp. 145–150 (2012)Google Scholar
  23. 23.
    Staring, M., Klein, S., Pluim, J.: A rigidity penalty term for nonrigid registration. Med. Phys. 34(11), 4098–4108 (2007)CrossRefGoogle Scholar
  24. 24.
    Cardoso, J., Leung, K., Modat, M., Keihaninejad, S., Cash, D., Barnes, J., Fox, N., Ourselin, S.: STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med. Image Anal. 17(6), 671–684 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marta Bianca Maria Ranzini
    • 1
    Email author
  • Michael Ebner
    • 1
    • 3
  • M. Jorge Cardoso
    • 1
    • 3
  • Anastasia Fotiadou
    • 2
  • Tom Vercauteren
    • 1
    • 3
  • Johann Henckel
    • 2
  • Alister Hart
    • 2
    • 3
  • Sébastien Ourselin
    • 1
    • 3
  • Marc Modat
    • 1
    • 3
  1. 1.Translational Imaging Group, CMICUniversity College LondonLondonUK
  2. 2.Royal National Orthopaedic Hospital NHS Foundation TrustStanmoreUK
  3. 3.Wellcome/EPSRC Centre for Interventional and Surgical SciencesUCLLondonUK

Personalised recommendations