Automatic Localization of the Lumbar Vertebral Landmarks in CT Images with Context Features

  • Dimitrios DamopoulosEmail author
  • Ben Glocker
  • Guoyan Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10734)


A recent research direction for the localization of anatomical landmarks with learning-based methods is to explore ways to enrich the trained models with context information. Lately, the addition of context features in regression-based approaches has been tried in the literature. In this work, a method is presented for the addition of context features in a regression setting where the locations of many vertebral landmarks are regressed all at once. As this method relies on the knowledge of the centers of the vertebral bodies (VBs), an automatic, endplate-based approach for the localization of the VB centers is also presented. The proposed methods are evaluated on a dataset of 28 lumbar-focused computed tomography images. The VB localization method detects all of the lumbar VBs of the testing set with a mean localization error of 3.2 mm. The multi-landmark localization method is tested on the task of localizing the tips of all the inferior articular processes of the lumbar vertebrae, in addition to their VB centers. The proposed method detects these landmarks with a mean localization error of 3.0 mm.


Regression Localization Lumbar Vertebral body Inferior articular process 


  1. 1.
    Reginster, J.: The prevalence and burden of arthritis. Rheumatology 41(Supp 1), 3–6 (2002)CrossRefGoogle Scholar
  2. 2.
    Al Arif, S.M.M.R., Gundry, M., Knapp, K., Slabaugh, G.: Improving an active shape model with random classification forest for segmentation of cervical vertebrae. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 3–15. Springer, Cham (2016). Scholar
  3. 3.
    Roberts, M.G., Cootes, T.F., Adams, J.E.: Automatic location of vertebrae on DXA images using random forest regression. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 361–368. Springer, Heidelberg (2012). Scholar
  4. 4.
    Liao, S., Zhan, Y., Dong, Z., Yan, R., Gong, L., Zhou, X., Salganicoff, M., Fei, J.: Automatic lumbar spondylolisthesis measurement in CT images. IEEE Trans. Med. Imaging 35(7), 1658–1669 (2016)CrossRefGoogle Scholar
  5. 5.
    Tu, Z.: Auto-context and its application to high-level vision tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE (2008)Google Scholar
  6. 6.
    Gao, Y., Shen, D.: Context-aware anatomical landmark detection: application to deformable model initialization in prostate CT images. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 165–173. Springer, Cham (2014). Scholar
  7. 7.
    Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013). Scholar
  8. 8.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)CrossRefGoogle Scholar
  9. 9.
    Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.: CPR: curved planar reformation. In: Proceedings of the IEEE Visualization Conference, VIS 2002, pp. 37–44. IEEE (2002)Google Scholar
  10. 10.
    Velut, J.: A spline-driven image slicer. VTK J. (2011)Google Scholar
  11. 11.
    Štern, D., Likar, B., Pernuš, F., Vrtovec, T.: Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Phys. Med. Biol. 55(1), 247–264 (2010)CrossRefGoogle Scholar
  12. 12.
    Forsberg, D., Lundström, C., Andersson, M., Vavruch, L., Tropp, H., Knutsson, H.: Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis. Phys. Med. Biol. 58(6), 1775–1787 (2013)CrossRefGoogle Scholar
  13. 13.
    Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dimitrios Damopoulos
    • 1
    Email author
  • Ben Glocker
    • 2
  • Guoyan Zheng
    • 1
  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland
  2. 2.Faculty of EngineeringImperial College LondonLondonUK

Personalised recommendations