Advertisement

Unfolded Cylindrical Projection for Rib Fracture Diagnosis

  • Catalina Tobon-GomezEmail author
  • Tyler Stroud
  • John Cameron
  • Dave Elcock
  • Andrew Murray
  • Daniel Wyeth
  • Chris Conway
  • Steven Reynolds
  • Pedro Augusto Gondim Teixeira
  • Alain Blum
  • Costas Plakas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10734)

Abstract

The recommended exam for assessing chest trauma is a computed tomography (CT) chest scan. Using multi-planar reconstructions to evaluate a CT volume to assess the ribcage is a tedious and time-consuming task. We have designed an application that provides an automatically rendered unfolded unobstructed view of the entire ribcage using an unfolded cylindrical projection. This paper describes the underlying algorithm which has two main steps: ribcage segmentation and ribcage unfolding. The unfolding technique we developed preserves the relative size and location of the ribs and surrounding tissue, providing a natural anatomical reference for the reader. It also demonstrated usefulness to identify other musculoskeletal conditions such us scoliosis, calcified cartilage, bone tumours. To evaluate the usefulness of the application, we evaluated it on 70 representative CT chest scans. The evaluation was performed by a clinical expert who graded the specialized unfolded cylindrical projection view on a 5 point Likert scale according to the level of diagnostic confidence. Results showed that 84% of the studies were clinically useful (above grade 3). The algorithm is fully automatic and it runs in an average time of 24 s. The evaluation described in this paper gives positive initial feedback on the usefulness of the application. A recent multi-reader clinical study showed that using the specialized unfolded cylindrical projection view obtains similar diagnostic accuracy to conventional multi-planar reconstructions while reducing the reading time.

Keywords

Rib fractures Clinical application Unfolded ribcage 

References

  1. 1.
    Hospital ambulatory medical care survey: 2013 emergency department summary tables (2013)Google Scholar
  2. 2.
    EuroSafe: Injuries in the European Union: summary of injury statistics for the years 2008–2010 (2013)Google Scholar
  3. 3.
    Calhoon, J., Trinkle, J.: Pathophysiology of chest trauma. Chest Surg. Clin. N. Am. 7(2), 199–211 (1997)Google Scholar
  4. 4.
    Gondim Teixeira, P.A., Blum, A.: Clinical Application of Musculoskeletal CT: Trauma, Oncology, and Postsurgery. MR, pp. 1–27. Springer, Heidelberg (2017).  https://doi.org/10.1007/174_2017_25Google Scholar
  5. 5.
    Ringl, H., Lazar, M., Töpker, M., Woitek, R., Prosch, H., Asenbaum, U., Balassy, C., Toth, D., Weber, M., Hajdu, S., Soza, G., Wimmer, A., Mang, T.: The ribs unfolded - a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients. Eur. Radiol. 25(7), 1865–1874 (2015)CrossRefGoogle Scholar
  6. 6.
    Dabbah, M., Murphy, S., Pello, H., Courbon, R., Beveridge, E., Wiseman, S., Wyeth, D., Poole, I.: Detection and location of 127 anatomical landmarks in diverse CT datasets. In: Ourselin, S., Styner, M. (eds.) Proceedings of SPIE Medical Imaging 2014: Image Processing, vol. 9034, p. 903415. SPIE (2014)Google Scholar
  7. 7.
    O’Neil, A.: Image analysis of noisy 3D/4D medical datasets. Ph.D. thesis, Heriot-Watt University, UK (2015)Google Scholar
  8. 8.
    Criminisi, A., Shotton, J. (eds.): Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London (2013)Google Scholar
  9. 9.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  10. 10.
    Crum, W., Griffin, L., Hill, D., Hawkes, D.: Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage 20(3), 1425–1437 (2003)CrossRefGoogle Scholar
  11. 11.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056195CrossRefGoogle Scholar
  12. 12.
    Urbaneja, A., De Verbizier, J., Formery, A., Tobon-Gomez, C., Nace, L., Blum, A., Gondim Teixeira, P.: Automatic rib cage unfolding with CT cylindrical projection reformat in polytraumatized patients for rib fracture detection and characterization: diagnostic performance and clinical application (Under review)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Catalina Tobon-Gomez
    • 1
    Email author
  • Tyler Stroud
    • 1
  • John Cameron
    • 1
  • Dave Elcock
    • 1
  • Andrew Murray
    • 1
  • Daniel Wyeth
    • 1
  • Chris Conway
    • 1
  • Steven Reynolds
    • 1
  • Pedro Augusto Gondim Teixeira
    • 2
  • Alain Blum
    • 2
  • Costas Plakas
    • 1
  1. 1.Toshiba Medical Visualization SystemsEdinburghUK
  2. 2.Service d’Imagerie Guilloz, CHRUNancyFrance

Personalised recommendations