Localization of Bone Surfaces from Ultrasound Data Using Local Phase Information and Signal Transmission Maps

  • Ilker HacihalilogluEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10734)


Low signal-to-noise ratio, imaging artifacts and bone boundaries appearing several millimeters in thickness have hampered the success of ultrasound (US) guided computer assisted orthopedic surgery procedures. In this paper we propose a robust and accurate bone localization method. The proposed approach is based on the enhancement of bone surfaces using the combination of three different local image phase features. The extracted local phase image features are used as an input to an \(L_{1}\) norm-based contextual regularization method for the enhancement of bone shadow regions. During the final stage the enhanced bone features and shadow region information is combined into a dynamic programming solution for the localization of the bone surface data. Qualitative and quantitative validation was performed on 150 in vivo US scans obtained from seven subjects by scanning femur, knee, distal radius and vertebrae bones. Validation against expert segmentation achieved a mean surface localization error of 0.26 mm a 67% improvement over state of the art.


Ultrasound Bone segmentation Orthopedics Local phase Signal transmission 


  1. 1.
    Tonetti, J., Carrat, L., Blendea, S., Merloz, P., Troccaz, J., Lavallée, S., Chirossel, J.P.: Clinical results of percutaneous pelvic surgery. Computer assisted surgery using ultrasound compared to standard fluoroscopy. Comput. Aided Surg. 6(4), 204–211 (2001)CrossRefGoogle Scholar
  2. 2.
    Baka, N., Leenstra, S., van Walsum, T.: Machine learning based bone segmentation in ultrasound. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 16–25. Springer, Cham (2016). Scholar
  3. 3.
    Foroughi, P., Boctor, E., Swartz, M., Taylor, R., Fichtinger, G.: P6d–2 ultrasound bone segmentation using dynamic programming. In: Proceedings of the 2007 IEEE Ultrasonics Symposium, pp. 2523–2526. IEEE (2007)Google Scholar
  4. 4.
    Anas, E.M.A., et al.: Bone enhancement in ultrasound based on 3D local spectrum variation for percutaneous scaphoid fracture fixation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 465–473. Springer, Cham (2016). Scholar
  5. 5.
    Hacihaliloglu, I., Guy, P., Hodgson, A., Abugharbieh, R.: Automatic extraction of bone surfaces from 3D ultrasound images in orthopaedic trauma cases. Int. J. Comput. Assist. Radiol. Surg. 10(8), 1279–1287 (2015)CrossRefGoogle Scholar
  6. 6.
    Jia, R., Mellon, S., Hansjee, S., Monk, A., Murray, D., Noble, J.: Automatic bone segmentation in ultrasound images using local phase features and dynamic programming. In: Proceedings of the 13th IEEE International Symposium on Biomedical Imaging, ISBI 2016, pp. 1005–1008. IEEE (2016)Google Scholar
  7. 7.
    Ozdemir, F., Ozkan, E., Goksel, O.: Graphical modeling of ultrasound propagation in tissue for automatic bone segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 256–264. Springer, Cham (2016). Scholar
  8. 8.
    Quader, N., Hodgson, A., Abugharbieh, R.: Confidence weighted local phase features for robust bone surface segmentation in ultrasound. In: Linguraru, M.G., Oyarzun Laura, C., Shekhar, R., Wesarg, S., González Ballester, M.Á., Drechsler, K., Sato, Y., Erdt, M. (eds.) CLIP 2014. LNCS, vol. 8680, pp. 76–83. Springer, Cham (2014). Scholar
  9. 9.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A., Rohling, R.: Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound. Ultrasound Med. Biol. 37(10), 1689–1703 (2011)Google Scholar
  10. 10.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A., Rohling, R.: Bone surface localization in ultrasound using image phase-based features. Ultrasound Med. Biol. 35(9), 1475–1487 (2009)CrossRefGoogle Scholar
  11. 11.
    Kovesi, P.: Image features from phase congruency. Videre: J. Comput. Vis. Res. 1(3), 1–26 (1999)Google Scholar
  12. 12.
    Hacihaliloglu, I., Rasoulian, A., Rohling, R., Abolmaesumi, P.: Local phase tensor features for 3D ultrasound to statistical shape+pose spine model registration. IEEE Trans. Med. Imaging 33(11), 2167–2179 (2014)CrossRefGoogle Scholar
  13. 13.
    Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Belaid, A., Boukerroui, D.: \(\alpha \) scale spaces filters for phase based edge detection in ultrasound images. In: Proceedings of the 11th IEEE International Symposium on Biomedical Imaging, ISBI 2014, pp. 1247–1250. IEEE (2014)Google Scholar
  15. 15.
    Karamalis, A., Wein, W., Klein, T., Navab, N.: Ultrasound confidence maps using random walks. Med. Image Anal. 16(6), 1101–1112 (2012)CrossRefGoogle Scholar
  16. 16.
    Hacihaliloglu, I.: Enhancement of bone shadow region using local phase-based ultrasound transmission maps. Int. J. Comput. Assist. Radiol. Surg. 12(6), 951–960 (2017)CrossRefGoogle Scholar
  17. 17.
    Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV 2013, pp. 617–624. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of RadiologyRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA

Personalised recommendations